EFFECT OF VARIABLE FLUID PROPERTIES AND THERMOPHORESIS ON UNSTEADY FORCED CONVECTIVE MAGNETOHYDRODYNAMICS BOUNDARY LAYER FLOW ALONG A PERMEABLE STRETCHING/SHRINKING WEDGE

¹Kamau Ng'ang'a John, ²Kimathi Mark M, ³Magua Amos N, ⁴Nzyoka Festus .K.

¹³⁴Department of mathematics Kenyatta University P.O BOX 43844-00100 Nairobi Kenya
 ²Department of mathematics Machakos University P.O BOX 136-90100 Machakos Kenya

Abstract: The study takes into account temperature dependent viscosity and thermal conductivity as well as induced magnetic field in describing the fluid flow. The partial differential equations governing the unsteady flow is transformed to a system of non-linear ordinary differential equations by similarity transformation. The transformed differential equations are solved by collocation method. The numerical results for the flow variables: velocity, temperature and concentration profiles are displayed graphically for several parameters and discussed in details. The effect of physical parameters such as: Skin friction, Nusselt number, Sherwood number and thermophoresis particle deposition are also tabulated. The results shows that the increasing values of positive variable viscosity parameter increases the velocity, temperature, concentration and decreases all the four stated physical parameters .For the decreasing values of negative variable viscosity parameter all the three flow variables decreases while all the physical parameters increases.

Keywords: boundary layer, variable viscosity, variable thermal conductivity, thermophoresis, unsteady flow.

1. PRELIMINARIES

1.1 NOTATION AND TERMINOGY:

(u,v) Velocity components, f_{w} , Suction/injection parameter, K unsteadiness parameter, N_t thermophoresis parameter, N_c concentration ratio, Ha Hartman number, Pr_{∞} ambient Prandtl number, Sc_{∞} ambient Prandtl number, Pr_v variable Prandtl number, Sc_v variable Prandtl number, V_{∞} kinematic viscosity, λ Stretching /shrinking parameter, θ_r variable viscosity parameter, β wedge angle parameter, γ thermal conductivity variation parameter κ thermophoretic coefficient $, \theta$ dimensionless temperature $, \phi$ dimensionless concentration $^{\mu}$ dynamic viscosity, $^{\psi}$ stream function, $^{\eta}$ similarity variable

Vol. 6, Issue 1, pp: (1-35), Month: April - September 2018, Available at: www.researchpublish.com

1.2 INTRODUCTION:

Fluid is a substance that flows under an applied sheer force. Some fluid properties include: density, viscosity, temperature, pressure, specific volume, weight and gravity. Properties of interest in this study are viscosity and temperature.

In the past studies have been done considering constant fluid properties, some of the studies with constant viscosity and thermal conductivity include: Shedzad *et al.*(2014) analyzed the effect of thermophoresis mechanisms on mixed convection flow with different flow and thermal conditions. Thermophoretic transport of aerosol particles through a fluid convection laminar boundary layer in cross flow over a cylinder has been reported by (Gang and Jayaraj, 1990).

Goren (1977) analyzed thermophoresis in laminar flow over a horizontal flat plate. He noted that the deposition of particles on cold plate and particles free layer in hot plate case, the deposition efficiency of small particles due to thermophoresis in laminar tube has been calculated (Walker *et al.* 1979). Thermophoresis in natural convection for a cold vertical flat surface has been analyzed (Epstein etal.1985). The thermophoretic deposition of particles from a boundary layer flow onto a continuously wavy surface, has been studied numerically by (Wang and Chen ,2006) there numerical results showed that the mean deposition effect of the wavy plates is greater than the flat plates.

Duwairi and Damesh (2008) studied the effect of thermophoresis particle deposition on mixed convection from vertical surface embedded in a fluid saturated porous medium. Rahman and Postelnicu (2010) studied the effects of thermophoresis on forced convective laminar flow of viscous incompressible fluid over a rotating disk

All the above discussed studies considered a fluid with a constant viscosity and thermal conductivity .Viscosity is thermo physical property of a fluid which has many application in our day to day life such in wire drawing ,glass fiber production ,paper production etc. Due to practical application researchers have studied flows with temperature dependent viscosity. Makinde (2006) studied the laminar falling liquid film with variable viscosity along an inclined heated plate .Mukhopadhyay *et al.* (2005) studied MHD boundary layer flow over a heated stretching sheet with variable viscosity. Ali (2006) analyzed the effect of variable viscosity on mixed convection heat transfer along a vertical moving surface heated plate. Kandasamy and Muhaimin (2010) studied the Scaling transformation forth effect of temperature dependent fluid viscosity with thermophoresis particle deposition on MHD free convective heat and mass transfer over a porous stretching surface.

The authors considered a fluid with a constant thermal conductivity of the fluid. Thermal conductivity is a property of a material to conduct heat .From definition thermal conductivity is a physical property of fluid that may also vary with variation of temperature. Hayat *et al.* (2013) analyzed three dimensional flows of Jeffery fluids with variable thermal conductivity. The main finding of the study was that the effect of varying thermal conductivity increases the shear stress. The thickness of the thermal boundary layer relative to velocity boundary layer depends on the Prandtl number. As the viscosity and thermal conductivity vary with temperature so due the Prandtl number .Despite this fact the pre-mentioned studies treated Prandtl number as a constant. Using constant Prandtl number within the boundary layer when the fluid properties are temperature dependent produces errors in the computed results (Rahman et al. 2009)

Rahman et al. (2010) studied a series of thermal boundary layer problems while varying viscosity and thermal conductivity. There studies confirmed that for accurate prediction of the thermal characteristics of variable viscosity and thermal conductivity fluid flow the Prandtl number must be treated as a variable rather than a constant.

Alam *et al.* (2016) studied the effect of thermophoretic particle deposition on unsteady forced convective boundary layer flow of a viscous incompressible fluid. From there results they observed that, for variable thermal conductivity, the Prandtl number and Schmidt number should be considered as variable rather than constants thus confirming (Rahman *et al.* 2010) work.

The motivation behind this study is to extend the work of Alam *et al.* (2016) ,where we consider variable: viscosity, thermal conductivity, Prandtl number and Schmidt number and introduce Magnetic field on fluid flow.

2. MATHEMATICAL MODEL

We consider unsteady two -dimensional laminar flow in presence of a magnetic field applied parallel to y-axis of viscous incompressible electrically conducting fluid along a porous wedge .The flow is assumed to be in the x-direction which is taken along the direction of the wedge and y-axis is normal .Viscosity, thermal conductivity, Prandtl and Schmidt

Vol. 6, Issue 1, pp: (1-35), Month: April - September 2018, Available at: www.researchpublish.com

numbers are all treated as variables .There suction which is imposed on the surface of the wedge. The boundary layer governing equations for this problem are as follows.

$$\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} = 0 \tag{2.1}$$

$$\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y} = \frac{\partial u_e}{\partial u} + u_e \frac{\partial u_e}{\partial x} + \frac{1}{\rho_{\infty}} \frac{\partial}{\partial y} \left(\mu \frac{\partial u}{\partial y} \right) - \frac{\sigma B_0^2 \left(u - U \right)}{\rho}$$
(2.2)

$$\frac{\partial T}{\partial t} + u \frac{\partial T}{\partial x} + v \frac{\partial T}{\partial y} = \frac{1}{\rho_{\infty} c_p} \frac{\partial}{\partial y} \left(k_f \frac{\partial T}{\partial y} \right) + \frac{\sigma B_0^2 (u - U)^2}{\rho c_p}$$
(2.3)

$$\frac{\partial C}{\partial t} + u \frac{\partial C}{\partial x} + v \frac{\partial C}{\partial y} = D \frac{\partial^2 C}{\partial y^2} - \frac{\partial}{\partial y} (V_T C)$$
(2.4)

2.1 The Flow Geometry:

The figure below illustrate the model used for fluid flow

Fig 1: flow geometry

The surface of the wedge is maintained at uniform constant temperature T_w and uniform concentration C_w which are higher than the temperature T_{∞} and concentration C_{∞} of the fluid respectively .On the figure B_0 denote the applied magnetic field parallel to y-axis, U(x,t) is the potential flow velocity and $\Omega = \beta \pi$ is the angle of the wedge.

2.2 NON DIMENSIONALIZATION:

Non dimensionalization is important since the results obtained for a surface experience on a set of conditions can be applied to a geometrically similar surface experience with the different conditions.

The partial differential equations governing the flow are transformed to ordinary differential equations by similarity transformation. Let u, v be the velocity component in x and y directions respectively and $U=u_e$ the potential flow velocity generated by the wedge, T the temperature of the fluid inside the thermal boundary layer, C the concentrations

inside boundary layer. $V_T = -\frac{\kappa v_{\infty}}{T} \frac{\partial T}{\partial y}$ Is the thermophoretic velocity as defined (Talbot *et al.*1980) where κ is the

thermophoretic coefficient.

Using the following relations

Vol. 6, Issue 1, pp: (1-35), Month: April - September 2018, Available at: www.researchpublish.com

$$\eta = y \sqrt{\frac{(m+1)u_e}{2v_{\infty}x}}, \psi = \sqrt{\frac{2u_e v_{\infty}x}{m+1}} f(\eta), \theta(\eta) = \frac{T - T_{\infty}}{T_w - T_{\infty}}, \phi(\eta) = \frac{C - C_{\infty}}{C_w - C_{\infty}}$$

Where η is the similarity variable, ψ is the stream function that satisfies the continuity equation such that $u = \frac{\partial \psi}{\partial y}$ and

 $v = -\frac{\partial \psi}{\partial x}$. The specific equations (2.2)-(2.4) can be transformed as discussed herein.

2.2.1 Transformation of Equation of Motion:

The specific equation of motion governing the flow as given in (2.2) is

$$\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y} = \frac{\partial u_e}{\partial u} + u_e \frac{\partial u_e}{\partial x} + \frac{1}{\rho_{\infty}} \frac{\partial}{\partial y} \left(\mu \frac{\partial u}{\partial y} \right) - \frac{\sigma B_0^2 (u - U)}{\rho}$$

We start by transforming the terms on the left hand side (LHS) using

The relation
$$u = \frac{\partial \psi}{\partial y}$$
 and $v = -\frac{\partial \psi}{\partial x}$ (2.5)

Given that \mathbf{u} is the velocity component in x direction and \mathbf{u}_e is the potential flow velocity

$$u = \frac{\partial \psi}{\partial y} = \frac{\partial}{\partial y} \left(\sqrt{\frac{2u_e v_\infty x}{(m+1)}} f(\eta) \right)$$
(2.6)

$$=\sqrt{\frac{2u_e v_{\infty} x}{(m+1)}} \frac{\partial f}{\partial y} = \sqrt{\frac{2u_e v_{\infty} x}{(m+1)}} \frac{\partial f}{\partial \eta} \frac{\partial \eta}{\partial y} = \sqrt{\frac{2u_e v_{\infty} x}{(m+1)}} f' \sqrt{\frac{(m+1)}{2v_{\infty} x}}$$

(2.7)

$$u = u_e f' \tag{2.8}$$

Using the obtained relation (2.8) we proceed as follows

$$\frac{\partial u}{\partial t} = \frac{\partial (u_e f')}{\partial t} = \frac{\partial (u_e f')}{\partial \eta} \frac{\partial \eta}{\partial t} = u_e f'' \frac{\partial \eta}{\partial t}$$
(2.9)

Differentiating ue by chain rule we get

$$\frac{\partial \eta}{\partial t} = \frac{\partial}{\partial t} \left(y \sqrt{\frac{(m+1)u_e}{2v_{\infty}x}} \right) = y \sqrt{\frac{(m+1)}{2v_{\infty}x}} \frac{\partial u_e^{\frac{1}{2}}}{\partial t} = y \sqrt{\frac{(m+1)}{2v_{\infty}x}} \frac{\partial u_e^{\frac{1}{2}}}{\partial u_e} \frac{\partial u_e}{\partial t}$$

$$= y \sqrt{\frac{(m+1)}{2v_{\infty}x}} \frac{1}{2} u_e^{\frac{-1}{2}} \frac{\partial}{\partial t} \left(v_{\infty} x^m \delta^{-m-1} \right)$$

$$= y \sqrt{\frac{(m+1)}{2v_{\infty}x}} \frac{1}{2} u_e^{\frac{-1}{2}} v_{\infty} x^m \frac{\partial \delta^{-m-1}}{\partial \delta} \frac{\partial \delta}{\partial t}$$

$$= y \sqrt{\frac{(m+1)}{2v_{\infty}x}} \frac{1}{2} u_e^{\frac{-1}{2}} v_{\infty} x^m (-m-1) \delta^{-m-2} \frac{\partial \delta}{\partial t}$$
(2.10)

Research Publish Journals

Page | 4

Vol. 6, Issue 1, pp: (1-35), Month: April - September 2018, Available at: www.researchpublish.com

Since potential flow velocity generated by the wedge is defined as

$$\boldsymbol{u}_{e} = \frac{\boldsymbol{v}_{\infty} \boldsymbol{x}^{m}}{\boldsymbol{\delta}^{m+1}} \text{ (Sattar, 2011).Then equation (2.9) above reduces to}$$

$$\frac{\partial \eta}{\partial t} = y \sqrt{\frac{(m+1)}{2v_{\infty}x}} \frac{1}{2} u_{e} \frac{-1}{2} \left(\frac{\boldsymbol{v}_{\infty} \boldsymbol{x}^{m}}{\boldsymbol{\delta}^{m+1} \boldsymbol{\delta}}\right) (-m-1) \frac{\partial \boldsymbol{\delta}}{\partial t}} = y \sqrt{\frac{(m+1)}{2v_{\infty}x}} \frac{1}{2} u_{e} \frac{-1}{2} \left(\frac{u_{e}}{\boldsymbol{\delta}}\right) (-m-1) \frac{\partial \boldsymbol{\delta}}{\partial t}}$$

$$= \eta \frac{1}{2\boldsymbol{\delta}} (-m-1) \frac{\partial \boldsymbol{\delta}}{\partial t} \tag{2.11}$$

Substituting (2.11) into (2.9) we get

$$\frac{\partial u}{\partial t} = \frac{\partial (u_e f')}{\partial t} = \frac{\partial (u_e f')}{\partial \eta} \frac{\partial \eta}{\partial t} = u_e f'' \frac{\partial \eta}{\partial t} = u_e f'' \eta \frac{1}{2\delta} (-m-1) \frac{\partial \delta}{\partial t}$$
(2.12)

Which the transformed equivalence of the first term on the LHS of equation of motion .Using the solution for (2.5) the second term of on the LHS of equation of motion is transformed as follows

$$u\frac{\partial u}{\partial x} = u_e f' \frac{\partial (u_e f')}{\partial x} = u_e f' \left(f' \frac{\partial u_e}{\partial x} + u_e \frac{\partial f'}{\partial x} \right) = u_e f' \left(f' \frac{\partial}{\partial x} \left(\frac{v_{\infty} x^m}{\delta^{m+1}} \right) + u_e \frac{\partial f'}{\partial \eta} \frac{\partial}{\partial x} \right)$$

$$= u_e f' \left(f' v_{\infty} \frac{m x^{m-1}}{\delta^{m+1}} + u_e f'' \frac{\partial \eta}{\partial x} \right) = u_e f' \left(f' \frac{m}{x} u_e + f'' \frac{\partial \eta}{\partial x} \right)$$
(2.13)
But $\frac{\partial \eta}{\partial x} = \frac{\partial}{\partial x} \left(y \sqrt{\frac{(m+1)u_e}{2v_{\infty} x}} \right) = y \sqrt{\frac{(m+1)v_{\infty}}{2v_{\infty} \delta^{m+1}}} \frac{\partial}{\partial x} \left(\frac{x^m}{x} \right)^{\frac{1}{2}} = y \sqrt{\frac{(m+1)}{2\delta^{m+1}}} \left(\frac{m-1}{2} \right) x^{\frac{m-3}{2}}$
(2.14)
$$\frac{\partial \eta}{\partial x} = y \sqrt{\frac{(m+1)u_e}{2v_{\infty} x}} \frac{m-1}{2x} = \eta \frac{m-1}{2x}$$
(2.14)
Substituting (2.14) into (2.13) we get $u\frac{\partial u}{\partial x} = u_e f' \left(f' \frac{m}{x} u_e + f'' \frac{\partial \eta}{\partial x} \right) = u_e f' \left(f' \frac{m}{x} u_e + f'' \frac{\partial \eta}{\partial x} \right)$

Equation (2.15) is the transformed equivalence of the second term on the LHS of equation of motion For the third term of equation of motion, it's transformed as shown below, given that \mathbf{v} is the velocity component in \mathbf{y}

For the third term of equation of motion, it's transformed as shown below, given that **v** is the velocity component in <u>v</u> direction. Using the value of **u** the velocity component in **x** direction as $u = u_e f'$ from (2.8) we have;

$$v\frac{\partial u}{\partial y} = v\frac{\partial}{\partial y}\left(u_{e}f'\right) = v\left(u_{e}\frac{\partial f'}{\partial y} + f'\frac{\partial u_{e}}{\partial y}\right) = vu_{e}\frac{\partial f'}{\partial \eta}\frac{\partial \eta}{\partial y} = vu_{e}f''\frac{\eta}{y}$$
(2.16)

Since the potential flow velocity u_e is not a function of y thus $\frac{\partial u_e}{\partial y} = 0$

Research Publish Journals

Page | 5

(2.15)

The potential flow velocity is given by $u_e = \frac{x^m v_{\infty}}{\delta^{m+1}}$

$$v = -\frac{\partial \psi}{\partial x} = -\frac{\partial}{\partial x} \left(\sqrt{\frac{2u_e v_\infty x}{m+1}} f(\eta) \right) = -\sqrt{\frac{2v_\infty}{m+1}} \frac{\partial}{\partial x} \left(\sqrt{u_e x} f \right)$$
$$= -\sqrt{\frac{2v_\infty}{m+1}} \frac{\partial}{\partial x} \sqrt{\left(\frac{x^m v_\infty x}{\delta^{m+1}}\right)} f$$
$$= -v_\infty \sqrt{\frac{2}{(m+1)\delta^{m+1}}} \frac{\partial}{\partial x} \left(x^{\frac{m+1}{2}} f \right)$$
$$= -v_\infty \sqrt{\frac{2}{(m+1)\delta^{m+1}}} \left(x^{\frac{m+1}{2}} \frac{\partial f}{\partial x} + f \frac{\partial x^{\frac{m+1}{2}}}{\partial x} \right)$$
(2.17)

But

$$= -v_{\infty}\sqrt{\frac{2}{(m+1)\delta^{m+1}}} \left(x^{\frac{m+1}{2}}\frac{\partial f}{\partial x}\frac{\partial \eta}{\partial x} + \left(\frac{m+1}{2}\right)x^{\frac{m-1}{2}}f\right) \text{ substuting } \frac{\partial \eta}{\partial x} = \eta \frac{m-1}{2x} \text{ from (2.14)}$$

$$= -v_{\infty}\sqrt{\frac{2}{(m+1)\delta^{m+1}}} \left(x^{\frac{m+1}{2}}\eta \frac{m-1}{2x}f' + \left(\frac{m+1}{2}\right)x^{\frac{m-1}{2}}f\right)$$

$$= -v_{\infty}\sqrt{\frac{2x^{m}}{(m+1)\delta^{m+1}x}} \left(f'\eta\left(\frac{m-1}{2}\right) + \left(\frac{m+1}{2}\right)f\right) = -v_{\infty}\sqrt{\frac{2u_{e}}{(m+1)v_{\infty}x}} \left(\frac{m+1}{2}\right) \left(\frac{m-1}{m+1}\eta f' + f\right)$$

$$v = -\sqrt{\frac{2}{m+1}}\frac{v_{\infty}x^{\frac{m-1}{2}}}{\delta^{\frac{m+1}{2}}}\frac{m+1}{2} \left(\frac{m-1}{m+1}\eta f' + f\right)$$

(2.18)

Thus (2.16) reduces to

$$v\frac{\partial u}{\partial y} = vu_{e}f''\frac{\eta}{y} = -\sqrt{\frac{2}{m+1}}\frac{v_{\infty}x^{\frac{m-1}{2}}}{\delta^{\frac{m+1}{2}}}\frac{m+1}{2}\left(\frac{m-1}{m+1}\eta f' + f\right)u_{e}f''\frac{\eta}{y}$$
(2.19)

Differentiating the terms on the right hand side of the equation of motion

$$\frac{\partial u_e}{\partial t} = \frac{\partial}{\partial t} \left(\frac{v_{\infty} x^m}{\delta^{m+1}} \right) = v_{\infty} x^m \frac{\partial \delta^{-(m+1)}}{\partial t} = v_{\infty} x^m (-m-1) \delta^{(-m-2)} \frac{\partial \delta}{\partial t}$$
(2.20)

$$u_{e} \frac{\partial u_{e}}{\partial x} = u_{e} \frac{\partial}{\partial x} \left(\frac{v_{\infty} x^{m}}{\delta^{m+1}} \right) = u_{e} \frac{m v_{\infty} x^{m-1}}{\delta^{m+1}}$$
(2.21)

In this research temperature dependent viscosity is used (Dybbs and ling, 1987) as shown

Vol. 6, Issue 1, pp: (1-35), Month: April - September 2018, Available at: www.researchpublish.com

$$\mu = \mu_{\infty} \left(\frac{\theta_r}{\theta_r - \theta} \right)$$
 Where θ_r is the variable viscosity parameter and θ is the dimensionless temperature

$$\frac{1}{\rho_{\infty}}\frac{\partial}{\partial y}\left(\mu\frac{\partial u}{\partial y}\right) = \frac{\mu_{\infty}}{\rho_{\infty}}\frac{\partial}{\partial y}\left(\left(\frac{\theta_{r}}{\theta_{r}-\theta}\right)\frac{\partial u}{\partial y}\right) = \frac{\mu_{\infty}}{\rho_{\infty}}\left(\frac{\partial u}{\partial y}\frac{\partial}{\partial y}\left(\frac{\theta_{r}}{\theta_{r}-\theta}\right) + \frac{\theta_{r}}{\theta_{r}-\theta}\frac{\partial^{2}u}{\partial y^{2}}\right)$$

But $\frac{\partial u}{\partial y} = u_e \frac{\eta}{y} f''$

He

ence
$$\frac{\partial^2 u}{\partial y^2} = \frac{\partial}{\partial y} \left(\frac{\partial u}{\partial y} \right) = u_{\infty} \left(\frac{\partial}{\partial y} \left(\frac{\eta}{y} \right) f'' \right) = u_e \frac{\eta^2}{y^2} f'''$$
(2.22)

$$\frac{\partial}{\partial y}\left(\frac{\theta_r}{\theta_r-\theta}\right) = \frac{(\theta_r-\theta)\frac{\partial\theta_r}{\partial y} - \theta_r\frac{\partial}{\partial y}(\theta_r-\theta)}{(\theta_r-\theta)^2} = \frac{\theta_r\theta'\frac{\eta}{y}}{(\theta_r-\theta)^2}$$

Thus
$$\frac{1}{\rho_{\infty}}\frac{\partial}{\partial y}\left(\mu\frac{\partial u}{\partial y}\right) = \frac{\mu_{\infty}}{\rho_{\infty}}\left(u_{e}\frac{\eta}{y}f''\left(\frac{\theta_{r}\theta'\frac{\eta}{y}}{(\theta_{r}-\theta)^{2}}\right) + \frac{\theta_{r}}{\theta_{r}-\theta}u_{e}\frac{\eta^{2}}{y^{2}}f'''\right)$$
 expanding yields

$$\frac{\mu_{\infty}}{\rho_{\infty}}\frac{\partial}{\partial y}\left(\mu\frac{\partial u}{\partial y}\right) = \frac{\mu_{\infty}}{\rho_{\infty}}u_{\infty}\frac{\eta^{2}}{y^{2}}\left(\frac{\theta_{r}}{(\theta_{r}-\theta)^{2}}\right)\theta'f'' + \frac{\mu_{\infty}}{\rho_{\infty}}u_{e}\frac{\eta^{2}}{y^{2}}\left(\frac{\theta_{r}}{(\theta_{r}-\theta)}\right)f'''$$
(2.23)

Considering the magnetic effect on the equation of motion

$$\frac{\sigma B_0^2}{\rho} (u - u_e) \sin c e \, u = u_e f' \, from \, (2.8) \, \frac{\sigma B_0^2}{\rho} (u - u_e) = \frac{\sigma B_0^2}{\rho} (u_e f' - u_e) = \frac{u_e \sigma B_0^2 (f' - 1)}{\rho} \quad (2.24)$$

Combining the transformed, terms that is (2.5) to (2.24) so as to divide through by the coefficient of f'''

$$ie\frac{\mu_{\infty}}{\rho_{\infty}}u_{e}\frac{\eta^{2}}{y^{2}}\left(\frac{\theta_{r}}{(\theta_{r}-\theta)}\right)f'''$$

$$u_{e}f''\frac{\eta}{\delta}\left(\frac{m+1}{2}\right)\frac{\partial\delta}{\partial t}+u_{e}^{2}\frac{m}{x}(f')^{2}+u_{e}^{2}\eta\left(\frac{m-1}{2x}\right)ff''-\sqrt{\frac{(m+1)}{2x}}u_{e}v_{\infty}}u_{e}\frac{\eta}{y}ff''$$

$$-\sqrt{\frac{(m+1)}{2x}}u_{e}v_{\infty}\frac{\eta^{2}}{y}\left(\frac{m-1}{2x}\right)u_{e}ff''$$

$$=v_{\infty}x^{m}(-m-1)\delta^{(-m-2)}\frac{\partial\delta}{\partial t}+u_{e}\frac{mv_{\infty}x^{m-1}}{\delta^{m+1}}+\frac{\mu_{\infty}}{\rho_{\infty}}u_{e}\frac{\eta^{2}}{y^{2}}\left(\frac{\theta_{r}}{(\theta_{r}-\theta)^{2}}\right)\theta'f''$$

$$+\frac{\mu_{\infty}}{\rho_{\infty}}u_{e}\frac{\eta^{2}}{y^{2}}\left(\frac{\theta_{r}}{(\theta_{r}-\theta)}\right)f'''-\frac{u_{e}\sigma B_{0}^{2}(f'-1)}{\rho}$$

$$(2.25)$$

Research Publish Journals

Page | 7

Vol. 6, Issue 1, pp: (1-35), Month: April - September 2018, Available at: www.researchpublish.com

We obtain the following after simplifying the coefficient of f'' on equation (2.25)

$$\begin{split} u_{e} \frac{\eta}{\delta} \left(\frac{m+1}{2}\right) \frac{\partial \delta}{\partial t} \div \frac{\mu_{\infty}}{\rho_{\infty}} u_{e} \frac{\eta^{2}}{y^{2}} \left(\frac{\theta_{r}}{(\theta_{r}-\theta)}\right) = u_{e} \frac{\eta}{\delta} \left(\frac{m+1}{2}\right) \frac{\partial \delta}{\partial t} \frac{\rho_{\infty}}{\mu_{\omega} u_{e}} \left(1-\frac{\theta}{\theta_{r}}\right) \frac{y^{2}}{\eta^{2}} \\ = \frac{\eta(m+1)}{2\delta} \left(1-\frac{\theta}{\theta_{r}}\right) \frac{\partial \delta}{\partial t} \frac{\rho_{\infty}}{\mu_{\infty}} \frac{2v_{\infty}x}{(m+1)u_{e}} = \frac{\eta}{\delta} x \left(1-\frac{\theta}{\theta_{r}}\right) \frac{\partial \delta}{\partial t} \frac{\delta^{m+1}}{x^{m}v_{\infty}} = \eta \left(1-\frac{\theta}{\theta_{r}}\right) \frac{\delta}{x^{m-1}v_{\infty}} \frac{\partial \delta}{\partial t} K = \frac{\delta^{m}}{x^{m-1}v_{\infty}} \frac{\partial \delta}{\partial t} \\ = \eta \left(1-\frac{\theta}{\theta_{r}}\right) K \end{split}$$

$$(2.26a)$$

Where K is the unsteadiness parameter

Simplifying the coefficient of f'^2 on equation (2.25)

$$\begin{aligned} u_{e}^{2} \frac{m}{x} \div \frac{\mu_{\infty}}{\rho_{\infty}} u_{e} \frac{\eta^{2}}{y^{2}} \left(\frac{\theta_{r}}{(\theta_{r} - \theta)} \right) &= u_{e}^{2} \frac{m}{x} \frac{\rho_{\infty}}{\mu_{\infty} u_{e}} \frac{(\theta_{r} - \theta)}{\theta_{r}} \frac{y^{2}}{\eta^{2}} \\ &= \frac{v_{\infty} x^{m}}{\delta^{m+1}} \left(1 - \frac{\theta}{\theta_{r}} \right) \frac{\rho_{\infty}}{\mu_{\infty}} \frac{m}{x} \frac{y^{2}}{\eta^{2}} \\ &= \frac{m x^{m-1}}{\delta^{m+1}} \left(1 - \frac{\theta}{\theta_{r}} \right) \frac{2v_{\infty} x}{(m+1)u_{e}} = \frac{2m}{m+1} \left(1 - \frac{\theta}{\theta_{r}} \right) \end{aligned}$$
(2.26b)
$$&= \beta \left(1 - \frac{\theta}{\theta_{r}} \right) \end{aligned}$$

Where $\beta = \frac{2m}{m+1}$ is the wedge angle parameter

Simplifying the coefficient of ff'' on equation (2.25)

$$\sqrt{\frac{(m+1)}{2x}} u_e v_\infty u_e \frac{\eta}{y} \div \frac{\mu_\infty}{\rho_\infty} u_e \frac{\eta^2}{y^2} \left(\frac{\theta_r}{(\theta_r - \theta)}\right) = \sqrt{\frac{(m+1)}{2x}} u_e v_\infty u_e \frac{\rho_\infty}{\mu_\infty} \left(1 - \frac{\theta}{\theta_r}\right) \frac{y}{\eta}$$

$$= \sqrt{\frac{(m+1)}{2x}} u_e v_\infty \frac{\rho_\infty}{\mu_\infty} \left(1 - \frac{\theta}{\theta_r}\right) \sqrt{\frac{2xv_\infty}{(m+1)u_e}} = \left(1 - \frac{\theta}{\theta_r}\right)$$
(2.26c)

Simplifying the first and second terms on the RHS on equation (2.25)

$$v_{\infty}x^{m}(-m-1)\delta^{(-m-2)}\frac{\partial\delta}{\partial t} + u_{e}\frac{mv_{\infty}x^{m-1}}{\delta^{m+1}} = \frac{-v_{\infty}x^{m}(m+1)}{\delta^{m+2}}\frac{\partial\delta}{\partial t} + u_{e}\frac{mv_{\infty}x^{m-1}}{\delta^{m+1}}$$
$$= \frac{-v_{\infty}x^{m}(m+1)}{\delta^{m+1} \cdot \delta}\frac{\partial\delta}{\partial t} + u_{e}\frac{mv_{\infty}x^{m}}{\delta^{m+1} \cdot s} \qquad \text{since } u_{e} = \frac{x^{m}v_{\infty}}{\delta^{m+1}}$$
$$= \frac{-u_{e}}{\delta}(m+1)\frac{\partial\delta}{\partial t} + \frac{mu_{e}^{2}}{x}$$

Dividing each term above by $\frac{\mu_{\infty}}{\rho_{\infty}}u_e \frac{\eta^2}{y^2} \left(\frac{\theta_r}{(\theta_r - \theta)}\right)$

Given that
$$\frac{y^2}{\eta^2} = \frac{2xv_{\infty}}{(m+1)u_e}$$
 and kinematic viscosity $v_{\infty} = \frac{\mu_{\infty}}{\rho_{\infty}}$
 $\frac{-u_e}{\delta}(m+1)\frac{\partial\delta}{\partial t} \bullet \frac{\rho_{\infty}}{\mu_{\infty}u_e} \left(1 - \frac{\theta}{\theta_r}\right)\frac{y^2}{\eta^2} = -\frac{(m+1)}{\delta}\frac{\partial\delta}{\partial t}\frac{\rho_{\infty}}{\mu_{\infty}} \left(1 - \frac{\theta}{\theta_r}\right)\frac{2xv_{\infty}}{(m+1)u_e}$

$$= -\frac{1}{\delta}\frac{\partial\delta}{\partial t} \left(1 - \frac{\theta}{\theta_r}\right)\frac{2x\delta^{m+1}}{x^m v_{\infty}} = -2K\left(1 - \frac{\theta}{\theta_r}\right)$$
(2.26d)

Where K is the unsteadiness parameter given by $K = \frac{\delta^m}{x^{m-1}v_{\infty}} \frac{\partial \delta}{\partial t}$

$$\frac{mu_e^2}{x} \bullet \frac{\rho_{\infty}}{\mu_{\infty}u_e} \left(1 - \frac{\theta}{\theta_r}\right) \frac{y^2}{\eta^2} = \frac{mu_e}{x} \frac{\rho_{\infty}}{\mu_{\infty}} \left(1 - \frac{\theta}{\theta_r}\right) \frac{2xv_{\infty}}{(m+1)u_e} = \frac{2m}{(m+1)} \left(1 - \frac{\theta}{\theta_r}\right)$$

$$= \beta \left(1 - \frac{\theta}{\theta_r}\right)$$
(2.26e)

Simplifying the third term on the RHS of equation (2.25), the coefficient of $\theta' f''$

$$\frac{\mu_{\infty}}{\rho_{\infty}} u_{e} \frac{\eta^{2}}{y^{2}} \left(\frac{\theta_{r}}{(\theta_{r} - \theta)^{2}} \right) \div \frac{\mu_{\infty}}{\rho_{\infty}} u_{e} \frac{\eta^{2}}{y^{2}} \left(\frac{\theta_{r}}{(\theta_{r} - \theta)} \right)$$
$$= \left(\frac{\theta_{r}}{(\theta_{r} - \theta)^{2}} \right) \left(\frac{(\theta_{r} - \theta)}{\theta_{r}} \right) = \frac{1}{(\theta_{r} - \theta)}$$
(2.26f)

Simplifying the last term on the RHS of equation (2.25), the coefficient of magnetic term

$$\frac{u_e \sigma B_0^2}{\rho} (f'-1) \div \frac{\mu_{\infty}}{\rho_{\infty}} u_e \frac{\eta^2}{y^2} \left(\frac{\theta_r}{(\theta_r - \theta)} \right)$$

$$= \frac{u_e \sigma B_0^2}{\rho} (f'-1) \frac{\rho_{\infty}}{\mu_{\infty} u_e} \frac{(\theta_r - \theta)}{\theta_r} \frac{2v_{\infty} x}{(m+1)u_e}$$

$$= \frac{\sigma B_0^2}{\rho} (f'-1) \left(1 - \frac{\theta}{\theta_r}\right) \frac{2x}{(m+1)u_e} = Ha^2 (f'-1) \left(1 - \frac{\theta}{\theta_r}\right) \frac{2}{m+1}$$
(2.26g)

Ha is the Hartman number representing the magnetic effect given by $Ha = B_0 \sqrt{\frac{\sigma x}{\rho u_e}}$

Combining the terms obtained in (2.26a)-(2.26g) we get

$$f''' + \left(1 - \frac{\theta}{\theta_r}\right) ff'' + \frac{1}{\theta_r - \theta} f''\theta' + \beta \left(1 - \frac{\theta}{\theta_r}\right) \left(1 - f'^2\right) - K \left(1 - \frac{\theta}{\theta_r}\right) \left(2 - 2f' - \eta f''\right) - Ha^2 \left(f' - 1\right) \left(1 - \frac{\theta}{\theta_r}\right) \frac{2}{m+1} = 0$$

$$(2.27)$$

Research Publish Journals

Page | 9

Equation (2.27) is the specific differential equation of motion

2.2.2 Transformation of Energy Equation:

The energy equation as given in (2.3) is

$$\frac{\partial T}{\partial t} + u \frac{\partial T}{\partial x} + v \frac{\partial T}{\partial y} = \frac{1}{\rho_{\infty} c_p} \frac{\partial}{\partial y} \left(k_f \frac{\partial T}{\partial y} \right) + \frac{u_e \sigma B_0^2}{\rho} (u - U)^2 \text{ Using the non dimensionless variable } \theta(\eta) \text{ which}$$

denotes the dimensionless temperature and given by $\theta(\eta) = \frac{T - T_{\infty}}{T_w - T_{\infty}}$ where T is the temperature of the fluid inside the thermal boundary layer given by $T = \theta(\eta) (T_w - T_{\infty}) + T_{\infty}$

Operating on the first term on the left hand side of differential equation of energy (2.3)

$$\frac{\partial T}{\partial t} = \frac{\partial}{\partial t} (\theta(\eta) (T_w - T_w) + T_w) = (T_w - T_w) \frac{\partial \theta}{\partial t} = (T_w - T_w) \frac{\partial \theta}{\partial \eta} \frac{\partial \eta}{\partial t}$$

$$= (T_w - T_w) \theta' \frac{\eta}{2\delta} (-m - 1) \frac{\partial \delta}{\partial t}$$
(2.28)
$$where \frac{\partial \eta}{\partial t} = \eta \frac{1}{2\delta} (-m - 1) \frac{\partial \delta}{\partial t} from (2.10)$$

Operating on the second term on the left hand side of differential equation of energy (2.3)

$$u\frac{\partial T}{\partial x} = u_e f'\frac{\partial}{\partial x} \left(\theta(\eta) \left(T_w - T_w\right) + T_w\right) = u_e f'\frac{\partial \theta}{\partial \eta}\frac{\partial \eta}{\partial x} \left(T_w - T_w\right)$$
$$= u_e f' \left(T_w - T_w\right)\theta' \eta \left(\frac{m-1}{2x}\right)$$
(2.29)

where $u = u_e f'$ from (2.8) and $\frac{\partial \eta}{\partial x} = \eta \frac{m-1}{2x}$ from (2.14)

$$v\frac{\partial T}{\partial y} = v\frac{\partial}{\partial y}\left(\theta(\eta)\left(T_{w} - T_{\infty}\right) + T_{\infty}\right) = v\left(T_{w} - T_{\infty}\right)\frac{\partial\theta}{\partial y} = v\left(T_{w} - T_{\infty}\right)\frac{\partial\theta}{\partial\eta}\frac{\partial\eta}{\partial y} = v\left(T_{w} - T_{\infty}\right)\theta'\frac{\eta}{y}$$

But V the velocity component in the y direction, from (2.18) is given by

$$v = -\sqrt{\frac{2}{(m+1)}} \frac{v_{\infty} x^{\frac{m-1}{2}}}{\sigma^{\frac{m+1}{2}}} \frac{m+1}{2} \left(\frac{m-1}{m+1} \eta f' + f\right)$$

Thus $v \frac{\partial T}{\partial y} = -\sqrt{\frac{2}{(m+1)}} \frac{v_{\infty} x^{\frac{m-1}{2}}}{\sigma^{\frac{m+1}{2}}} \frac{m+1}{2} \left(\frac{m-1}{m+1} \eta f' + f\right) (T_w - T_\infty) \theta' \frac{\eta}{y}$
(2.30)

Operating on the first term on the right hand side of energy equation, (2.3) where thermal conductivity is taken as a variable (chaim, 1996)

$$k_{f} = k_{\infty}(1 + \gamma\theta)$$

$$\frac{1}{\rho_{\infty}c_{p}}\frac{\partial}{\partial y}\left(k_{f}\frac{\partial T}{\partial y}\right) = \frac{1}{\rho_{\infty}c_{p}}\left(\frac{\partial k_{f}}{\partial y}\frac{\partial T}{\partial y} + k_{f}\frac{\partial^{2}T}{\partial y^{2}}\right)$$

$$= \frac{1}{\rho_{\infty}c_{p}}\left(k_{\infty}\gamma\theta'\frac{\eta^{2}}{y^{2}}\left(T_{w} - T_{\infty}\right)\theta' + k_{f}\frac{\eta^{2}}{y^{2}}\left(T_{w} - T_{\infty}\right)\theta''\right)$$
(2.31)

For the magnetic term

$$\frac{\sigma B_0^2}{\rho c_p} (u - u_e)^2 \sin ce \, u = u_e f' \, from \, (2.8)$$

$$\frac{\sigma B_0^2}{\rho c_p} (u - u_e)^2 = \frac{\sigma B_0^2}{\rho c_p} (u_e f' - u_e)^2 = \frac{u_e \sigma B_0^2 (f' - 1)^2}{\rho c_p}$$
(2.32)

Hence combining (2.28)-(2.32)) the differential energy equation becomes

$$(T_w - T_\infty)\theta'\frac{\eta}{2\delta}(-m-1)\frac{\partial\delta}{\partial t} + u_e f'(T_w - T_\infty)\theta'\eta\left(\frac{m-1}{2x}\right) - \sqrt{\frac{2}{(m+1)}}\frac{v_\infty x^{\frac{m-1}{2}}}{\delta^{\frac{m+1}{2}}}\frac{m+1}{2}\left(\frac{m-1}{m+1}\eta f' + f\right)(T_w - T_\infty)\theta'\frac{\eta}{\gamma}$$

$$=\frac{1}{\rho_{\infty}c_{p}}\left(k_{\infty}\gamma\theta'^{2}\frac{\eta^{2}}{y^{2}}\left(T_{w}-T_{\infty}\right)+k_{f}\frac{\eta^{2}}{y^{2}}\left(T_{w}-T_{\infty}\right)\theta''\right)+\frac{u_{e}\sigma B_{0}^{2}\left(f'-1\right)^{2}}{\rho c_{p}}$$
(2.33)

Dividing through by $\frac{1}{\rho_{\infty}c_p}k_f \frac{\eta^2}{y^2}(T_w - T_{\infty})$ the coefficient of θ''

For the coefficient of θ' on the left hand side of differential equation (2.33), we use the definition of thermal conductivity $k_f = k_{\infty}(1 + \gamma \theta)$ as defined and used in equation (2.31) and use the substitution as shown below

$$(T_{w} - T_{\infty})\theta' \frac{\eta}{2\delta}(m+1)\frac{\partial\delta}{\partial t}\frac{\rho_{\infty}c_{p}}{k_{f}(T_{w} - T_{\infty})}\frac{y^{2}}{\eta^{2}} = \theta'(m+1)\frac{\eta}{2\delta}\frac{\partial\delta}{\partial t}\frac{\rho_{\infty}c_{p}}{k_{\infty}(1+\gamma\theta)}\frac{2v_{\infty}x}{(m+1)u_{e}}$$

$$= \theta' \eta \frac{\partial\delta}{\partial t}\frac{\rho_{\infty}c_{p}}{k_{\infty}(1+\gamma\theta)}\frac{\delta^{m}}{x^{m-1}} = \theta'\eta \frac{\partial\delta}{\partial t}\frac{\rho_{\infty}pr_{\infty}}{(1+\gamma\theta)\mu_{\infty}}\frac{\delta^{m}}{x^{m-1}}$$

$$= \theta'\eta \frac{\partial\delta}{\partial t}\frac{\rho_{\infty}pr_{\infty}}{(1+\gamma\theta)v_{\infty}\rho_{\infty}}\frac{\delta^{m}}{x^{m-1}} = \theta'\eta K \frac{pr_{\infty}}{(1+\gamma\theta)}$$

$$Pr_{\infty} = \frac{\mu_{\infty}c_{p}}{k_{\infty}} \quad v_{\infty} = \frac{\mu_{\infty}}{\rho_{\infty}}K = \frac{\delta^{m}}{v_{\infty}x^{m-1}}\frac{\partial\delta}{\partial t}$$

$$(2.33a)$$

For the coefficient of $f\theta'$ on the left hand side of differential equation (4.29) we obtain

$$\sqrt{\frac{(m+1)v_{\infty}u_{e}}{2x}}f(T_{w}-T_{\infty})\theta'\frac{\eta}{y}\frac{\rho_{\infty}c_{p}}{k_{f}(T_{w}-T_{\infty})}\frac{y^{2}}{\eta^{2}}$$

$$=\sqrt{\frac{(m+1)v_{\infty}u_{e}}{2x}}f\theta'\sqrt{\frac{2v_{\infty}x}{(m+1)u_{e}}}\frac{\rho_{\infty}c_{p}}{k_{\infty}(1+\gamma\theta)}=v_{\infty}f\theta'\frac{\rho_{\infty}c_{p}}{k_{\infty}(1+\gamma\theta)}=\frac{pr_{\infty}f\theta'}{(1+\gamma\theta)}$$
(2.33b)

For the first term on the right hand side of differential equation (4.29) we obtain

$$k_{\infty}\gamma\theta'^{2}\frac{\eta^{2}}{y^{2}}\left(T_{w}-T_{\infty}\right)\frac{1}{\rho_{\infty}c_{p}}\frac{\rho_{\infty}c_{p}}{k_{\infty}(1+\gamma\theta)(T_{w}-T_{\infty})}\frac{y^{2}}{\eta^{2}} = \frac{\gamma}{1+\gamma\theta}\theta'^{2}$$
(2.33c)

Considering the magnetic term on

$$\frac{u_e \sigma B_0^2}{\rho_\infty c_p} (f'-1)^2 \frac{\rho_\infty c_p}{k_\infty (1+\gamma \theta)(T_w - T_\infty)} \frac{2v_\infty x}{(m+1)u_e}$$
$$= Ha^2 (f'-1) \frac{\Pr_\infty \rho_\infty}{c_p \mu_\infty} \frac{2u_e v_\infty}{(1+\gamma \theta)(T_w - T_\infty)(m+1)} = Ha^2 \Pr_\infty Ec \frac{2(f'-1)^2}{(1+\gamma \theta)(m+1)}$$
(2.33d)

Where Ha is the Harman number given by $Ha = B_0 \sqrt{\frac{\sigma x}{\rho u_e}}$ and $Ec = \frac{u_e}{c_p (T_w - T_\infty)}$

Thus combining the terms obtained from ((2.33a)-(2.33d)) the partial differential equation of energy (2.3) reduces to the ordinary differential equation of energy below.

$$\theta'' + \frac{\gamma}{1+\gamma\theta} {\theta'}^2 + \frac{pr_{\infty}f\theta'}{(1+\gamma\theta)} + \theta'\eta K \frac{pr_{\infty}}{(1+\gamma\theta)} + Ha^2 \operatorname{Pr}_{\infty} Ec \frac{2(f'-1)}{(1+\gamma\theta)(m+1)} = 0$$
(2.34)

Since variable Prandtl number is used in this research the ambient Prandtl number in equation (2.34) is replaced as

$$\Pr_{v} = \frac{\mu c_{p}}{k_{f}} = \frac{\mu_{\infty} (\theta_{r} / \theta_{r} - \theta) c_{p}}{k_{\infty} (1 + \gamma \theta)} = \frac{\Pr_{\infty}}{\left(1 - \frac{\theta}{\theta_{r}}\right) (1 + \gamma \theta)} \quad \text{thus} \quad \Pr_{\infty} = \Pr_{v} \left(1 - \frac{\theta}{\theta_{r}}\right) (1 + \gamma \theta) \text{hence equation}$$

(2.34) becomes

$$\theta'' + \frac{\gamma}{1+\gamma\theta} \theta'^{2} + \Pr_{\nu}\left(1-\frac{\theta}{\theta_{r}}\right) f\theta' + \theta'\eta K \Pr_{\nu}\left(1-\frac{\theta}{\theta_{r}}\right) + Ha^{2} \Pr_{\nu}\left(1-\frac{\theta}{\theta_{r}}\right) Ec \frac{2(f'-1)^{2}}{(m+1)} = 0$$
(2.35)

Equation (2.35) is the ordinary differential equation of energy with variable Prandtl number

2.2.3 Transformation of Concentration Equation:

The concentration equation as given by equation (2.4) is

$$\frac{\partial C}{\partial t} + u \frac{\partial C}{\partial x} + v \frac{\partial C}{\partial y} = D \frac{\partial^2 C}{\partial y^2} - \frac{\partial}{\partial y} (V_T C)$$

Vol. 6, Issue 1, pp: (1-35), Month: April - September 2018, Available at: www.researchpublish.com

Using the non dimensionless variable $\phi(\eta)$ which denotes the dimensionless concentration and given by $\phi(\eta) = \frac{C - C_{\infty}}{C_w - C_{\infty}}$ where C is the concentration of the fluid inside the boundary layer given by $C = \phi(\eta) (C_w - C_{\infty}) + C_{\infty}$

Operating on the first term on the left hand side of concentration equation (2.4)

$$\frac{\partial C}{\partial t} = \frac{\partial}{\partial t} \left((C_w - C_\infty) \phi(\eta) + C_\infty \right) = (C_w - C_\infty) \frac{\partial \phi}{\partial t}$$
$$= (C_w - C_\infty) \frac{\partial \phi}{\partial \eta} \frac{\partial \eta}{\partial t} \quad \text{From}(2.11) \frac{\partial \eta}{\partial t} = \eta \frac{1}{2\delta} (-m - 1) \frac{\partial \delta}{\partial t}$$

$$= (C_{W} - C_{\infty})\phi' \eta \frac{1}{2\delta}(-m-1)\frac{\partial\delta}{\partial t}$$
(2.36)

Operating on second term on the left hand side of concentration equation

Where
$$u = u_e f'$$
 from (2.8) and $\frac{\partial \eta}{\partial x} = \eta \left(\frac{m-1}{2x}\right)$ from (2.14)
 $u \frac{\partial C}{\partial x} = u_e f' \frac{\partial}{\partial x} \left((C_w - C_\infty) \phi(\eta) + C_\infty \right) = u_e f' (C_w - C_\infty) \frac{\partial \phi}{\partial x}$
 $= u_e f' (C_w - C_\infty) \frac{\partial \phi}{\partial \eta} \frac{\partial \eta}{\partial x} = u_e f' (C_w - C_\infty) \phi' \eta \left(\frac{m-1}{2x}\right)$
(2.37)

The V the velocity component in the y direction, from (2.18) is given by

$$v = -\sqrt{\frac{2}{(m+1)}} \frac{v_{\infty} x^{\frac{m-1}{2}}}{\sigma^{\frac{m+1}{2}}} \frac{m+1}{2} \left(\frac{m-1}{m+1} \eta f' + f\right)$$

$$v \frac{\partial C}{\partial y} = v \frac{\partial}{\partial y} \left((C_w - C_\infty) \phi(\eta) + C_\infty \right) = v (C_w - C_\infty) \frac{\partial \phi}{\partial y} = (C_w - C_\infty) \frac{\partial \phi}{\partial \eta} \frac{\partial \eta}{\partial y}$$

$$= v (C_w - C_\infty) \phi' \frac{\eta}{y} = -\sqrt{\frac{2}{(m+1)}} \frac{v_{\infty} x^{\frac{m-1}{2}}}{\sigma^{\frac{m+1}{2}}} \frac{m+1}{2} \left(\frac{m-1}{m+1} \eta f' + f\right) (C_w - C_\infty) \phi' \frac{\eta}{y} \quad (2.38)$$

$$D \frac{\partial^2 C}{\partial y^2} = D \frac{\partial}{\partial y} \left((C_w - C_\infty) \phi' \frac{\eta}{y} \right) = D (C_w - C_\infty) \frac{\eta^2}{y^2} \phi'' \quad (2.39)$$

The thermophoretic velocity V_T is given by

$$V_T = -\frac{kv_{\infty}}{T}\frac{\partial T}{\partial y} \qquad \text{by product rule } \frac{\partial}{\partial y}(V_T C) = V_T \frac{\partial C}{\partial y} + C \frac{\partial V_T}{\partial y}$$
(2.40)

$$V_T \frac{\partial C}{\partial y} = -\frac{kv_\infty}{T} \frac{\partial T}{\partial y} \frac{\partial C}{\partial y} = -\frac{kv_\infty}{T} (T_w - T_\infty) \theta' \frac{\eta}{y} (C_w - C_\infty) \phi' \frac{\eta}{y}$$
(2.41a)

Page | 13

$$C\frac{\partial V_T}{\partial y} = -Ckv_{\infty}\frac{\partial}{\partial y}\left(\frac{1}{T}\frac{\partial T}{\partial y}\right) = -Ckv_{\infty}\left(\frac{1}{T}\frac{\partial^2 T}{\partial y^2} + \frac{\partial T}{\partial y}\frac{\partial}{\partial y}\left(\frac{1}{T}\right)\right)$$
(2.41b)

Since $T = \theta(\eta) (T_w - T_\infty) + T$

Thus
$$C \frac{\partial V_T}{\partial y} = -C\kappa v_\infty \left\{ \frac{1}{T} \left(T_w - T_\infty \right) \theta'' \frac{\eta^2}{y^2} - \left(T_w - T_\infty \right)^2 {\theta'}^2 \frac{\eta^2}{y^2} \left(\frac{1}{\left(\left(T_w - T_\infty \right) \theta + T_\infty \right)^2} \right) \right\}$$

Substituting the of $C \frac{\partial V_T}{\partial y}$ and $V_T \frac{\partial C}{\partial y}$ into (2.40) we get

$$\frac{\partial}{\partial y} (V_T C) = V_T \frac{\partial C}{\partial y} + C \frac{\partial V_T}{\partial y} = -\frac{kv_\infty}{T} (T_w - T_\infty) \theta' \frac{\eta}{y} (C_w - C_\infty) \phi' \frac{\eta}{y} + C \left(\frac{1}{T} (T_w - T_\infty) \theta'' \frac{\eta^2}{y^2} - (T_w - T_\infty)^2 {\theta'}^2 \frac{\eta^2}{y^2} \left(\frac{1}{T^2} \right) \right)$$
(2.41c)

Combining (2.41a)-(2.41c) we get the differential equation of concentration

$$(C_{w} - C_{\infty})\phi'\eta \frac{1}{2\delta}(-m-1)\frac{\partial\delta}{\partial t} + u_{e}f'(C_{w} - C_{\infty})\phi'\eta \left(\frac{m-1}{2x}\right)$$

$$-\sqrt{\frac{2}{(m+1)}} \frac{v_{\infty}x^{\frac{m-1}{2}}}{\sigma^{\frac{m+1}{2}}} \frac{m+1}{2} \left(\frac{m-1}{m+1}\eta f' + f\right)(C_{w} - C_{\infty})\phi'\frac{\eta}{y} = D(C_{w} - C_{\infty})\frac{\eta^{2}}{y^{2}}\phi''$$

$$-\frac{kv_{\infty}}{T}(T_{w} - T_{\infty})\theta'\frac{\eta}{y}(C_{w} - C_{\infty})\phi'\frac{\eta}{y}$$

$$+C\left(\frac{1}{T}(T_{w} - T_{\infty})\theta''\frac{\eta^{2}}{y^{2}} - (T_{w} - T_{\infty})^{2}\theta'^{2}\frac{\eta^{2}}{y^{2}}\left(\frac{1}{T^{2}}\right)\right)$$
(2.42)

Dividing through by coefficient of ϕ'' that is $D(C_w - C_\infty) \frac{\eta^2}{y^2}$

For the first term on the left hand side of equation (2.42)

$$(C_{w} - C_{\infty})\phi'\frac{\eta}{2\delta}(m+1)\frac{\partial\delta}{\partial t}\frac{1}{(C_{w} - C_{\infty})D}\frac{y^{2}}{\eta^{2}} = \phi'\frac{\eta}{2\delta D}(m+1)\frac{\partial\delta}{\partial t}\frac{2v_{\infty}x}{(m+1)u_{e}} = \phi'\frac{\eta}{\delta D}\frac{\partial\delta}{\partial t}\frac{v_{\infty}x\delta^{m+1}}{v_{\infty}x^{m}}$$
$$= KSc_{\infty}\eta\phi'$$

(2.43a)

Where
$$Sc_{\infty} = \frac{v_{\infty}}{D} K = \frac{\delta^m}{v_{\infty} x^{m-1}} \frac{\partial \delta}{\partial t}$$

For the second term on the left hand side of equation (2.42)

$$\begin{split} u_e f'(C_w - C_\infty) \phi' \eta \left(\frac{m-1}{2x}\right) &\frac{1}{(C_w - C_\infty)D} \frac{y^2}{\eta^2} = u_e f' \phi' \eta \left(\frac{m-1}{2x}\right) \frac{2v_\infty x}{D(m+1)u_e} \\ &= f' \phi' \eta \left(\frac{m-1}{m+1}\right) \frac{v_\infty}{D} = Sc_\infty f' \phi' \eta \left(\frac{m-1}{m+1}\right) \end{split}$$
(2.43b)

For the third term on the left hand side of equation

Operating on the thermophoretic differential part of equation (2.42)

$$-\frac{\kappa v_{\infty}}{T}(T_{w}-T_{\infty})\theta'\frac{\eta}{y}(C_{w}-C_{\infty})\phi'\frac{\eta}{y}+\kappa v_{\infty}C\left(\frac{1}{T}(T_{w}-T_{\infty})\theta''\frac{\eta^{2}}{y^{2}}-(T_{w}-T_{\infty})^{2}\theta'^{2}\frac{\eta^{2}}{y^{2}}\left(\frac{1}{T^{2}}\right)\right)$$
$$-\frac{kv_{\infty}}{T}(T_{w}-T_{\infty})\theta'\frac{\eta}{y}(C_{w}-C_{\infty})\phi'\frac{\eta}{y}\frac{1}{(C_{w}-C_{\infty})D}\frac{y^{2}}{\eta^{2}}=-\frac{kv_{\infty}}{T}(T_{w}-T_{\infty})\theta'\phi'$$
$$=-\kappa Sc_{\infty}\frac{1}{(N_{t}+\theta)}\theta'\phi'$$
(2.43d)

Where the thermophoretic parameter N_i and dimensionless temperature θ when added simplifies as shown below

$$N_{t} + \theta = \frac{T_{\infty}}{T_{w} - T_{\infty}} + \frac{T - T_{\infty}}{T_{w} - T_{\infty}} = \frac{T}{T_{w} - T_{\infty}} \text{ and Schmidt number is given by } Sc_{\infty} = \frac{V_{\infty}}{D}$$
$$\frac{\kappa v_{\infty} C}{T} (T_{w} - T_{\infty}) \theta'' \frac{\eta^{2}}{y^{2}} \frac{1}{(C_{w} - C_{\infty})D} \frac{y^{2}}{\eta^{2}} = \frac{\kappa Sc_{\infty} C}{T} \frac{(T_{w} - T_{\infty})}{(C_{w} - C_{\infty})} \theta'' = \kappa Sc_{\infty} \frac{(N_{c} + \phi)}{(N_{t} + \theta)} \theta'' \quad (2.43e)$$

(2.42)

Vol. 6, Issue 1, pp: (1-35), Month: April - September 2018, Available at: www.researchpublish.com

Where the concentration ratio Nc and dimensionless concentration ϕ when added simplifies as shown below

$$N_{c} + \phi = \frac{C_{\infty}}{C_{w} - C_{\infty}} + \frac{C - C_{\infty}}{C_{w} - C_{\infty}} = \frac{C}{C_{w} - C_{\infty}}$$
$$- \kappa v_{\infty} C (T_{w} - T_{\infty})^{2} \theta'^{2} \frac{\eta^{2}}{y^{2}} (\frac{1}{T^{2}}) \frac{1}{(C_{w} - C_{\infty})D} \frac{y^{2}}{\eta^{2}} = -\kappa S c_{\infty} \frac{(N_{c} + \phi)\theta'^{2}}{(N_{t} + \theta)^{2}}$$
(2.43f)

Combining equations (2.43a) to (2.43f)

$$\phi'' + KSc_{\infty}\eta\phi' + Sc_{\infty}\left(\frac{m-1}{m+1}\right)f'\phi'\eta - Sc_{\infty}\left(\frac{m-1}{m+1}\right)\eta f'\phi' - Sc_{\infty}f\phi' + \kappa Sc_{\infty}\frac{1}{(N_{t}+\theta)}\theta'\phi' + \kappa Sc_{\infty}\frac{(N_{c}+\phi)}{(N_{t}+\theta)}\theta'' - \kappa Sc_{\infty}\frac{(N_{c}+\phi)\theta'^{2}}{(N_{t}+\theta)^{2}} = 0$$

$$(2.43g)$$

Rearranging the terms in (2.43g) we get the concentration equation below

$$\phi'' + Sc_{\infty}f\phi' + KSc_{\infty}\eta\phi' + \frac{kSc_{\infty}}{N_t + \theta} \left((N_c + \phi)\theta'' + \phi'\theta' - \left(\frac{N_c + \phi}{N_t + \theta}\right)\theta'^2 \right) = 0$$
(2.44a)

Since variable Schmidt number is used in this research the ambient Schmidt number is replaced as follows.

$$Sc_{\infty} = Sc_{\nu} \left(1 - \frac{1}{\theta_{r}}\right)_{\text{Thus}}$$
(2.44a) becomes
$$\phi'' + Sc_{\nu} \left(1 - \frac{1}{\theta_{r}}\right) f \phi' + KSc_{\nu} \left(1 - \frac{1}{\theta_{r}}\right) \eta \phi' + \left(1 - \frac{1}{\theta_{r}}\right) \frac{kSc_{\nu}}{N_{t} + \theta} \left((N_{c} + \phi)\theta'' + \phi'\theta' - \left(\frac{N_{c} + \phi}{N_{t} + \theta}\right)\theta'^{2}\right) = 0$$
(2.44b)

2.2.4 Reducing the Differential Equation to First Order:

The differential equations of motion, energy and concentration (2.27), (2.35) and (2.44b) respectively are shown below

$$\begin{split} f''' + \left(1 - \frac{\theta}{\theta_r}\right) ff'' + \frac{1}{\theta_r - \theta} f''\theta' + \beta \left(1 - \frac{\theta}{\theta_r}\right) \left(1 - f'^2\right) - K \left(1 - \frac{\theta}{\theta_r}\right) \left(2 - 2f' - \eta f''\right) - \\ Ha^2 \left(f' - 1\right) \left(1 - \frac{\theta}{\theta_r}\right) \frac{2}{m+1} = 0 \\ \theta'' + \frac{\gamma}{1 + \gamma \theta} \theta'^2 + \Pr_v \left(1 - \frac{\theta}{\theta_r}\right) f\theta' + \theta' \eta K \Pr_v \left(1 - \frac{\theta}{\theta_r}\right) + Ha^2 \Pr_v \left(1 - \frac{\theta}{\theta_r}\right) Ec \frac{2(f' - 1)^2}{(m+1)} = 0 \\ \phi'' + Sc_v \left(1 - \frac{1}{\theta_r}\right) f\phi' + KSc_v \left(1 - \frac{1}{\theta_r}\right) \eta \phi' + \left(1 - \frac{1}{\theta_r}\right) \frac{kSc_v}{N_t + \theta} \left((N_c + \phi)\theta'' + \phi'\theta' - \left(\frac{N_c + \phi}{N_t + \theta}\right){\theta'}^2\right) = 0 \end{split}$$

They are to be reduced to seven equivalent first order differential equations using the following relations

Let

$$f = x_1, f' = x_2, f'' = x_3, \theta = x_4, \theta' = x_5, \phi = x_6 and \phi' = x_7$$

We obtain the following system of equations

$$\begin{aligned} x_{1}' &= x_{2} \\ x_{2}' &= x_{3} \\ x_{3}' &= -\left(1 - \frac{x_{4}}{\theta_{r}}\right) x_{1} x_{3} - \frac{1}{\theta_{r} - x_{4}} x_{3} x_{5} - \beta \left(1 - \frac{x_{4}}{\theta_{r}}\right) \left(1 - f^{-2}\right) + K \left(1 - \frac{x_{4}}{\theta_{r}}\right) \left(2 - 2x_{2} - \eta x_{3}\right) \\ &+ Ha^{2} \left(x_{2} - 1\right) \left(1 - \frac{x_{4}}{\theta_{r}}\right) \frac{2}{m + 1} \\ x_{4}' &= x_{5} \\ x_{5}' &= -\frac{\gamma}{1 + \eta x_{4}} x_{5}^{-2} - pr_{\nu} \left(1 - \frac{x_{4}}{\theta_{r}}\right) x_{1} x_{5} - x_{5} \eta K p r_{\nu} \left(1 - \frac{x_{4}}{\theta_{r}}\right) - Ha^{2} \Pr_{\nu} \left(1 - \frac{x_{4}}{\theta_{r}}\right) Ec \frac{2\left(\left(x_{2} - 1\right)^{2}\right)}{(m + 1)} \\ x_{6}' &= x_{7} \\ x_{7}' &= -Sc_{\nu} \left(1 - \frac{x_{4}}{\theta_{r}}\right) x_{1} x_{5} - KSc_{\nu} \left(1 - \frac{x_{4}}{\theta_{r}}\right) \eta x_{5} - \frac{kSc_{\nu}}{N_{\tau} + x_{4}} \left(1 - \frac{x_{4}}{\theta_{r}}\right) \left(N_{c} + x_{6}\right) x_{5}' + x_{5} x_{7} - \left(\frac{N_{c} + x_{6}}{N_{\tau} + x_{4}}\right) x_{5}^{2} \right) \end{aligned}$$

2.2.5 NUMERICAL METHODS OF SOLUTIONS:

To outline the collocation method used to obtain the numerical solution we first write the above system of equation in vector form as below

$$\begin{aligned} \frac{d\bar{X}}{dt} &= \vec{g}(\eta, \vec{x}, \vec{p}) \quad for \ 0 \le \eta \ge \infty \end{aligned}$$

$$\begin{aligned} \vec{x} &= \begin{bmatrix} x_1, x_2, x_3, \dots, x_7 \end{bmatrix}^T \quad and \ \vec{g} = \begin{bmatrix} g_1, g_2, g_3, \dots, g_7 \end{bmatrix}^T \quad \text{For} \\ g_1 &= x_2 \ g_2 = x_3 \end{aligned}$$

$$g_3 &= -\left(1 - \frac{x_4}{\theta_r}\right) x_1 x_3 - \frac{1}{\theta_r - x_4} x_3 x_5 - \beta \left(1 - \frac{x_4}{\theta_r}\right) \left(1 - f^{-2}\right) + K \left(1 - \frac{x_4}{\theta_r}\right) \left(2 - 2x_2 - \eta x_3\right) \\ &+ Ha^2 \left(x_2 - 1 \left(1 - \frac{x_4}{\theta_r}\right) \frac{2}{m+1} \right) \\ g_4 &= x_5 \end{aligned}$$

$$g_5 &= -\frac{\gamma}{1 + \gamma x_4} x_5^2 - pr_v \left(1 - \frac{x_4}{\theta_r}\right) x_1 x_5 - x_5 \eta K pr_v \left(1 - \frac{x_4}{\theta_r}\right) - Ha^2 \Pr_v \left(1 - \frac{x_4}{\theta_r}\right) Ec \frac{2\left(\left(x_2 - 1\right)^2\right)}{(m+1)} \\ g_6 &= x_7 \end{aligned}$$

$$g_7 &= -Sc_v (1 - \frac{x_4}{\theta_r}) x_1 x_5 - KSc_v (1 - \frac{x_4}{\theta_r}) \eta x_5 - \frac{kSc_v}{N_t + x_4} (1 - \frac{x_4}{\theta_r}) \left((N_c + x_6)x_5^1 + x_5x_7 - \left(\frac{N_c + x_6}{N_t + x_4}\right)x_5^2\right) \end{aligned}$$
Thus (2.45) is solved subject to the boundary conditions $\vec{h} = (\vec{x}(0), \vec{x}(\infty), \vec{p}) = \vec{0}$

$$(2.45)$$

Where $\vec{h} = [h_1, h_2, h_3, \dots, h_7]^T$ suppressing \vec{p} in (2.45) for convenience we obtain $\vec{h} = (\vec{x}(0), \vec{x}(\infty)) = \vec{0}$

The approximate solution $\vec{S}(\eta)$ is continuous function that is cubic polynomial on each sub interval η_n, η_{n+1} of a mesh $0 = \eta < \eta < \dots < \eta_N = \infty$ it satisfies the boundary conditions $\vec{h} = (\vec{s}(0), \vec{s}(\infty)) = \vec{0}$ (2.47)

and the differential equations at both ends and midpoint of each sub interval

$$S'(\eta_n) = g(\eta_n, S(\eta_n))$$

$$S'((\eta_n + \eta_{n+1})/2) = g((\eta_n + \eta_{n+1})/2), S((\eta_n + \eta_{n+1})/2)$$

$$S'(\eta_{n+1}) = g((\eta_{n+1}), S(\eta_{n+1}))$$

These nonlinear algebraic equations are then solved iteratively by linearization .Since $\vec{S}(\eta)$ is a cubic polynomial approximating the solution $\vec{X}(\eta)$ then the iteration are done subject to the conditions:

$$\left\|\vec{X}(\eta) - \vec{S}(\eta)\right\| \le Ch^4 \tag{2.48}$$

Where h is the maximum of the step sizes

 $h_n = \eta_{n+1} - \eta_n$ For $\eta = 0, 1, 2, \dots, N$ and C is a constant

To obtain the initial guess for this collocation method, we note that the continuity

of $\vec{S}(\eta)$ on $(0,\infty)$ and collocation at the ends of each sub interval to imply that $\vec{S}(\eta)$ also has a continuous derivative on $(0,\infty)$. Thus for the approximation $\vec{S}(\eta)$ we compute the residual $\vec{r}(\eta)$ in the above system of ordinary differential equations as follows

$$\vec{r}(\eta) = \vec{S}'(\eta) - \vec{g}\left(\eta, \vec{S}'(\eta)\right)$$
(2.49)

Similarly the residual in the boundary conditions is obtained from (2.46). If the residuals are uniformly small, then $\hat{S}(\eta)$ is the required approximation of the exact solution $\vec{X}(\eta)$. Thus the ideal is to minimize the size of the residuals by ensuring that the condition (2.48) is met at each point n

3. RESULTS AND DISCUSSION

To analyses the effect of different parameters along a heated permeable stretching / shrinking wedge surface on dimensionless: velocity, temperature and concentration. Numerical results have been obtained on different kinds of parameters namely: Stretching /shrinking parameter λ , suction/injection parameter f_w , variable viscosity parameter θ_r , unsteadiness parameter K, wedge angle parameter β , thermophoresis parameter N_t , concentration ratio N_c , thermal conductivity variation parameter γ , thermophoretic coefficient κ and Hartman number Ha. When viscosity and thermal conductivity are treated as constants, then the value of the ambient Prandtl number

 $Pr_{\infty} = 0.71$ corresponds to air and Schmidt number $Sc_{\infty} = 0.94$ corresponds to carbon (iv) oxide. The default value of the other parameters are taken to be: $\lambda = 0.2$, $f_w = 1$, K = 0.2, $\beta = 0.9$, $\theta_r = 1.5$, $\gamma = 0.35$, $\kappa = 0.5$, $N_t = 5$, $N_c = 5$ and Ha = 1

3.1 Effect of stretching parameter λ on flow variables:

From figure 5.1 the velocity profile increases with increasing values of stretching parameter $\lambda > 0$, this is due to reduced viscosity of the fluid caused by the stretching boundary layer and thus the fluid flows more faster with minimal resistance

Vol. 6, Issue 1, pp: (1-35), Month: April - September 2018, Available at: www.researchpublish.com

Figure 5.2, illustrates the effect of stretching/shrinking parameter λ on dimensionless temperature, from the figure it implies that within the boundary layer the temperature decreases with increasing values of stretching parameter, $\lambda > 0$. This due to the increasing velocity caused by increasing values of $\lambda > 0$ to imply that the fluid do not get enough time to be heated by the heated wedge, thus the decrease in temperature.

Figure 4.3, illustrates the effect of stretching/shrinking parameter λ on dimensionless concentration, from the figure, concentration decreases insignificantly with increasing values of stretching parameter $\lambda > 0$. Increasing values of $\lambda > 0$ is seen to reduce the temperature thus few fluid particles will dissolve as the fluid becomes saturated at some given temperature hence the reduction in concentration

Figure 5.1: Velocity profile for different values of stretching/shrinking parameter λ

Figure 5.2: Temperature profile for different values of stretching/shrinking parameter λ

Figure 5.3: concentration profile for different values of shrinking/stretching parameter λ

3.2 Effect of suction parameter f_w on flow variables:

Figure 5.4 illustrates the effect of suction/injection parameters, f_w on dimensionless velocity from the figure the fluid velocity increases with the increase of suction parameter $f_w > 0$. This is due to reduction in thickness in hydrodynamic boundary layer as suction parameter increase causing removal of the decelerated fluid particles through the porous surfaces thus reducing the growth of boundary layer and hence increasing the fluid velocity.

Figure 5.5, illustrates the effect of suction /injection parameter, f_w on dimensionless temperature, from the figure, the dimensionless temperature decreases with increasing values of suction parameter f_w >0. Suction acts as a mechanism for cooling as it reduces the boundary layer thickness thus the fluid loses the heat to the surrounding by convection hence the decreasing its temperature.

Figure 5.6, illustrates the effect of suction/injection parameter f_w on dimensionless concentration, from the figure the dimensionless concentration decreases with increasing values of suction parameter f_w >0.Suction removes fluid particles and in turn lowering its concentration, increasing values of f_w > 0 is seen to reduce the temperature thus less fluid particles will dissolve as the fluid becomes saturated at some given temperature hence the reduction in concentration

Figure 5.4: Velocity profile for different values of suction/injection f_w

Figure 5.5: Temperature profile for different values of suction/injection parameter fw

Figure 5.6: concentration profile for different values of suction/injection f_w

3.3 Effect of variable viscosity parameter, θ_r on flow variables

Figure 5.7, illustrates the effect of variable viscosity parameter θ_r on dimensionless velocity, from the figure we see that within the boundary layer velocity increases with the increasing values of $\theta_r > 0$

From the differential equation of motion (4.23) given by

$$f''' + \left(1 - \frac{\theta}{\theta_r}\right)ff'' + \frac{1}{\theta_r - \theta}f''\theta' + \beta\left(1 - \frac{\theta}{\theta_r}\right)\left(1 - f'^2\right) - K\left(1 - \frac{\theta}{\theta_r}\right)\left(2 - 2f' - \eta f''\right) - Ha^2\left(f' - 1\right)\left(1 - \frac{\theta}{\theta_r}\right)\frac{2}{m+1} = 0$$

Vol. 6, Issue 1, pp: (1-35), Month: April - September 2018, Available at: www.researchpublish.com

For $\theta_r > 0$, as θ_r become more positive the value of $\left(1 - \frac{1}{\theta_r}\right)$ in equation of motion above increases as shown in **table**

1, as a result this increases the velocity .For $\theta_r < 0$ the velocity decreases as the values of θ_r become more negative since the scalar $\left(1 - \frac{1}{\theta_r}\right)$ reduces in size as shown in **table 1**, thus reducing velocity

Table 1: Numerical values of $\left(1 - \frac{1}{\theta_r}\right)$ for different values of variable viscosity parameter θ_r

θ_r	-3.0	-1.5	1.5	3.0
$\left(1-\frac{1}{\theta_r}\right)$	1.33	1.67	0.33	0.67

Figure 5.8, illustrates the effect of variable viscosity parameter θ_r on dimensionless temperature, from the figure for $\theta_r > 0$ the temperature within the boundary layer increases with increasing values of θ_r . From the differential equation of energy (4.32) shown below

$$\theta'' + \frac{\gamma}{1+\gamma\theta} {\theta'}^2 + \Pr_{\nu}\left(1 - \frac{1}{\theta_r}\right) f\theta' + \theta'\eta K \Pr_{\nu}\left(1 - \frac{1}{\theta_r}\right) + Ha^2 \Pr_{\nu}\left(1 - \frac{1}{\theta_r}\right) Ec \frac{2(f'-1)^2}{(m+1)} = 0$$

For $\theta_r > 0$ the increase in temperature is as a result of increase in the value of $\left(1 - \frac{1}{\theta_r}\right)$ due to θ_r becoming more positive as shown in **table 1**. For $\theta_r < 0$ the temperature within the boundary layer decreases as the values of θ_r become more negative since the scalar $\left(1 - \frac{1}{\theta_r}\right)$ reduces as θ_r become more negative.

Figure 4.9, illustrates the effect of variable viscosity parameter θ_r on dimensionless concentration, from the figure, profile for $\theta_r > 0$ and $\theta_r < 0$ are shown. For $\theta_r > 0$, the concentration within the boundary layer increases with the increasing values of θ_r

From the concentration differential equation

$$\phi'' + Sc_{v}\left(1 - \frac{1}{\theta_{r}}\right)f\phi' + KSc_{v}\left(1 - \frac{1}{\theta_{r}}\right)\eta\phi' + \left(1 - \frac{1}{\theta_{r}}\right)\frac{kSc_{v}}{N_{t} + \theta}\left((N_{c} + \phi)\theta'' + \phi'\theta' - \left(\frac{N_{c} + \phi}{N_{t} + \theta}\right)\theta'^{2}\right) = 0$$

For $\theta_r > 0$ the increase in concentration is as a result of increase in the value of

$$\left(1-\frac{1}{\theta_r}\right)$$
 in the above concentration equation (4.51b) due to increase in the value of $\theta_r > 0$. For $\theta_r < 0$ the

concentration within the boundary layer decreases as the values become more negative since the scalar $\left(1 - \frac{1}{\theta_r}\right)$ reduces as θ_r become more negative.

Research Publish Journals

Figure 5.7: Velocity profile for different values of variable viscosity parameter θ_r

Figure 5.8: Temperature profile for different values of variable viscosity parameter

Figure 5.9: concentration profile for different values of variable viscosity parameter θ_r

Vol. 6, Issue 1, pp: (1-35), Month: April - September 2018, Available at: www.researchpublish.com

3.4 Effect of Hartman number, Ha on flow variables:

Figure 5.10 illustrates the effect of Hartman number Ha on dimensionless velocity, from the figure the fluid velocity increases with increasing values of Ha. Hartman number presents the impact of the applied magnetic field in the flow field. The magnetic field in this research is applied vertically above the wedge denoted by $-B_0$, on interacting with the fluid its direction is changed to B_0 thus enhancing the fluid flow. These magnetic field moving with the free stream

induces an electromotive force which increases the motion of the fluid.

Figure 5.11, illustrates the effect of the effect of Hartman number Ha, on dimensionless temperature, from the figure, the temperature within the boundary layer insignificantly decreases with increasing value of Ha. From velocity profile (figure 5.10) Ha, is seen to enhance velocity to imply that the fluid does not get enough time to be heated by the wedge thus the reduction in temperature

Hartman number has no effect on concentration profile this is due to insignificant change in temperature thus particle deposition or dissolving in the fluid is insignificantly affected hence no effect on concentration.

Figure 5.10: Velocity profiles for different values of Hartman number Ha

Figure 5.11: Temperature profile for different values of Hartman number Ha

Vol. 6, Issue 1, pp: (1-35), Month: April - September 2018, Available at: www.researchpublish.com

3.5 Effect of wedge angle parameter, β on flow variables:

Figure 5.12, illustrates the effect of wedge angle parameter β , on dimensionless velocity, from the figure the fluid velocity increases with increasing values of wedge angle parameter. Wedge angle parameter is a measure of the pressure gradient, thus positive values of β indicate favorable pressure gradient for accelerated flows .From differential equation of motion (2.27)

$$f''' + \left(1 - \frac{\theta}{\theta_r}\right)ff'' + \frac{1}{\theta_r - \theta}f''\theta' + \beta\left(1 - \frac{\theta}{\theta_r}\right)\left(1 - f'^2\right) - K\left(1 - \frac{\theta}{\theta_r}\right)\left(2 - 2f' - \eta f''\right) - Ha^2\left(f' - 1\right)\left(1 - \frac{\theta}{\theta_r}\right)\frac{2}{m+1} = 0$$

It shows that increasing values of β would favor an increase in fluid velocity as it would act as positive scalar to the velocity .The wedge angle parameter has no effect on temperature and concentration since their differential equations (2.35) and (2.44b) are not functions of β

Figure 5.12: Velocity profile for different values of wedge angle parameter β

3.6 Effect of thermal conductivity parameter, γ on flow variables:

Figure 5.13 illustrates the effect of thermal conductivity variation parameter γ on dimensionless velocity, from the figure, the fluid velocity decreases with increasing value of γ . When the thermal conductivity of the fluid increases, the value of Prandtl number decreases to imply thermal diffusivity has increased resulting to a decrease in kinematic viscosity and thus the decrease in fluid velocity

Figure 5.14, illustrates the effect of thermal conductivity variation parameter γ on dimension less temperature, from the figure, the temperature within the boundary layer increases with increasing values of γ . When the thermal conductivity of the fluid increases, the value of Prandtl number decreases which intern increases the temperature of the fluid due to increased thermal diffusivity.

Figure 5.15, illustrates the effect of thermal conductivity parameter γ on dimensionless concentration ,from the figure, the concentration decreases with increasing values of γ . Since increasing values of are resulting to decrease in velocity, this will facilitate thermophoretic deposition hence decrease in concentration

Figure 5.13: Velocity profile for different values of thermal conductivity parameter γ

Figure 5.14: Temperature profile for different values of thermal conductivity parameter γ

Figure 5.15: concentration profile for different values of thermal conductivity parameter γ

Vol. 6, Issue 1, pp: (1-35), Month: April - September 2018, Available at: www.researchpublish.com

3.7 Effect of unsteadiness parameter on flow variables:

Figure 5.16, illustrates the effect of unsteadiness parameter K on dimensionless temperature. From the figure the temperature within the boundary layer increases with increasing values of K. Unsteady flows are time dependent thus with time since the wedge temperature is higher than that of the ambient fluid, through convection the heat is distributed from the wedge to the fluid thus raising its temperature

Figure 5.17; illustrate the effect of unsteadiness parameter K, on dimensionless concentration, from figure the concentration decreases with increasing values of K. Unsteadiness imply time dependent flow, thus as time goes by suction and thermophoretic deposition takes places thus reducing the concentration of the fluid

Figure 5.16: Temperature profile for different values of unsteadiness parameter K

Figure 5.17: concentration profile for different values of unsteadiness parameter K

Vol. 6, Issue 1, pp: (1-35), Month: April - September 2018, Available at: www.researchpublish.com

3.8 Effect of thermophoresis parameter, Nt on flow variables:

Figure 5.18, illustrate the effect of thermophoresis parameter N_t, on dimensionless concentration ,from the figure concentration increases with increasing values of N_t. From the definition $N_t = \frac{T_{\infty}}{T_w - T_{\infty}}$ it implies that an increases in

 N_t is as result of temperature of the fluid (T_{∞}) increasing, increase in temperature of the fluid increases solubility of fluid particles hence the concentration N_t has no effect on fluid velocity and temperature as there differential equations (2.35) and (2.44b) are not functions of N_t respectively.

3.9 Effect of concentration ratio parameter, N_c on flow variables:

Figure 5.19; illustrate the effect of concentration ratio parameter N_c, on dimensionless concentration, from figure the

concentration increases with increasing values of N_c. The concentration ratio is defined by $N_c = \frac{C_{\infty}}{C_w - C_{\infty}}$ to imply its

increase is as a result of fluid concentration (C_{∞}) increasing thus there is a direct relationship between concentration and concentration ratio. N_c has no effect on fluid velocity and temperature as there differential equations (3.45) and (3.56) are not functions of N_c respectively.

3.10 Effect of thermophoretic coefficient, κ on flow variables:

Figure 5.20, illustrates the effect of thermophoretic coefficient κ on dimensionless concentration, from the figure, the concentration decreases with increasing values of κ . Increasing values of thermophoretic coefficient imply increased thermophoretic deposition on the wedge, thus decrease in concentration as fluid particles are deposited. Thermophoretic coefficient, κ has no effect on fluid velocity and temperature as there differential equations (2.35) and (2.44b) are not functions of κ respectively.

Figure 5.18: concentration profile for different values of N_t

International Journal of Mathematics and Physical Sciences Research ISSN 2348-5736 (Online) Vol. 6, Issue 1, pp: (1-35), Month: April - September 2018, Available at: <u>www.researchpublish.com</u>

Figure 5.19: concentration profile for different values of concentration ratio N_c

Figure 5.20: concentration profile for different values of thermophoretic coefficient K

3.11 Effect of parameters variation on the skin friction, Nusselt number, Sherwood number and thermophoretic particle deposition velocity

The combined effect of variable viscosity θ_r , thermal conductivity parameter γ , suction/injection parameter f_w , wedge angle parameter β , shrinking /stretching parameter λ unsteadiness parameter K and Hartman number Ha on skin

friction
$$\left(Cf \operatorname{Re}^{\frac{1}{2}}\right)$$
 Nusselt number $\left(Nu \operatorname{Re}^{-\frac{1}{2}}\right)$, Sherwood number $\left(Sh \operatorname{Re}^{-\frac{1}{2}}\right)$ and thermophoretic particle deposition velocity $\left(Vd \operatorname{Re}^{-\frac{1}{2}}\right)$ are shown in table 1 Where

$$Cf \operatorname{Re}^{\frac{1}{2}} = \frac{\theta_r}{\theta_r - 1} \frac{2}{\sqrt{2 - \beta}} f''(0), \quad Nu \operatorname{Re}^{-\frac{1}{2}} = -\frac{(1 + \gamma)}{\sqrt{2 - \beta}} \theta'(0)$$
$$Sh \operatorname{Re}^{-\frac{1}{2}} = -\frac{1}{\sqrt{2 - \beta}} \phi(0) \text{ and } Vd \operatorname{Re}^{-\frac{1}{2}} = \frac{1}{\sqrt{2 - \beta}} \frac{1}{Sc_{\infty}} \phi'(0)$$

Table 2: Numerical values of skin friction, Nusselt number, Sherwood number and thermophoretic particle deposition fordifferent values of $\theta_r, \gamma, f_w, \beta, Ha, \lambda$ and K

Α	γ	f	ß	На	λ	K	1	1	_1	_1
v_r		J_w	P				$Cf \operatorname{Re}^{\overline{2}}$	$Nu \operatorname{Re}^{-2}$	$Sh \operatorname{Re}^{-\overline{2}}$	$Vd \operatorname{Re}^{\overline{2}}$
3.0							2.5794	0.8271	1.2902	1.4336
-1.5							2.3363	0.7802	1.1688	1.2987
1.5	0.35	1.0	0.9	1.0	0.2	0.2	4.3812	1.1344	2.2765	2.5294
3							3.4110	0.9779	1.7403	1.9337
	0.1						4.4348	1.1653	2.1731	2.4146
1.5	0.35	1.0	0.9	1.0	0.2	0.2	4.3812	1.1344	2.2765	2.5294
	0.6						4.3607	1.1028	2.3664	2.6394
		-1.0					2.9504	0.1148	0.3522	0.3522
		0.0					3.4825	0.5131	1.3066	1.4518
1.5	0.35	1.0	0.9	1.0	0.2	0.2	4.3812	1.1344	2.2765	2.5294
			0.2				3.2351	0.8851	1.7779	1.9754
1.5	0.35		0.9	1.0	0.2	0.2	4.3812	1.1344	2.2765	2.5294
			1.6				7.6454	1.8842	3.7785	4.1984
				0.5			3.7867	1.1212	2.2745	2.5272
1.5	0.35	1.0	0.9	1.0	0.2	0.2	4.3812	1.1344	2.2765	2.5294
				1.5			5.2046	1.1509	2.2795	2.5328
					-0.2		6.1199	1.0327	2.1961	2.4401
					0.0		5.2920	1.0848	2.2374	2.4860
1.5	0.35	1.0	0.9	1.0	0.2	0.2	4.3812	1.1344	2.2765	2.5294
						0.1	4.4594	1.1770	2.2149	2.4610
1.5	0.35	1.0	0.9	1.0	0.2	0.2	4.3812	1.1344	2.2767	2.5294
						0.3	4.3025	1.0894	2.3386	2.5984

Numerical values of Sherwood number $\left(Sh \operatorname{Re}^{-\frac{1}{2}}\right)$ and thermophoretic particle deposition velocity $\left(Vd \operatorname{Re}^{-\frac{1}{2}}\right)$ for different values of thermophoresis parameter N_t , concentration ratio N_c and thermophoretic coefficient κ are shown

in table 2 below. **Table 3: Numerical values of Sherwood number and thermophoretic particle deposition for different values of**

 κ, N_t and N_c

К	N _t	N_c	$Sh \operatorname{Re}^{-\frac{1}{2}}$	$Vd \operatorname{Re}^{-\frac{1}{2}}$
0.2			1.9652	2.1836
0.5	5	5	2.2765	2.5294
0.8			2.5743	2.8603
	2		2.9250	3.2500
0.5	5	5	2.2765	2.5294
	8		2.0875	2.3194
		2	1.9535	2.1705
0.5	5	5	2.2765	2.5294
		8	2.5908	2.8786

Vol. 6, Issue 1, pp: (1-35), Month: April - September 2018, Available at: www.researchpublish.com

3.12 Effect of parameters variation on the skin friction:

This is the friction between a fluid and the surface of a solid moving through it or between a moving fluid and its enclosing surface. The parameters discussed are shown in table 2

From table2 skin friction decreases with increasing values of $\theta_r > 0$, skin friction is function of θ_r as defined by

 $Cf \operatorname{Re}^{\frac{1}{2}} = \left(\frac{\theta_r}{\theta_r - 1}\right) \frac{2}{\sqrt{2 - \beta}} f''(0)$ Increasing values of $\theta_r > 0$ reduces $\left(\frac{\theta_r}{\theta_r - 1}\right)$ as shown in **table 4**, hence the

decrease in skin friction

Table 4: Numerical values of scalar $\left(\frac{\theta_r}{\theta_r - 1}\right)$ for different values of variable viscosity parameter θ_r

θ_r	-3	-1.5	1.5	3
$\left(\frac{\theta_r}{\theta_r-1}\right)$	0.75	0.6	3	1.5

Decreasing values of $\theta_r < 0$ as seen in **table 4**, increase $\left(\frac{\theta_r}{\theta_r - 1}\right)$ hence the increases in skin friction as θ_r become

more negative

From table 2 the skin friction decreases with increasing value of γ this can be attributed to the reduced velocity effect of increased values of as γ seen in velocity profile figure (5.13)

For suction parameter f_w the skin friction increases with increasing values of parameter f_w

This is as a result of as more fluid is sucked over the wedge surface over time the boundary layer thickness reduces and as a results more fluid molecules comes into contact with the wedge surface hence increasing the skin friction

Skin friction as seen in the table 2, increases with increasing values of wedge angle parameter, this can be attributed to the increased velocity as β increases as seen in figure (5.12). Increased velocity imply that the rate at which fluid particles touches the wedge surface increases thus increasing the skin friction. Also from the definition of skin friction

$$Cf \operatorname{Re}^{\frac{1}{2}} = \frac{\theta_r}{\theta_r - 1} \frac{2}{\sqrt{2 - \beta}} f''(0) \text{ thus as } \beta \text{ increases to approach } 2 \left(\lim_{\beta \to 2} \frac{2}{\sqrt{2 - \beta}} \right) \text{ the skin friction increases}$$

since the value under the root sign decreases

An increase in wedge angle parameter increases the velocity due to increased pressure gradient of the fluid and hence the skin friction as the rate at which fluid particles are in contact with the wedge surface per unit time increases

The Hartman number variation in the table shows that its increase, results to increase of skin friction. From velocity profile discussed the Ha was seen to increases the fluid velocity thus an increases in strength of Ha increases velocity and skin friction

For shrinking/stretching parameter λ , its increase results to decrease in skin friction. Thus as the wedge stretches the skin friction reduces since the boundary layer thickness increases and thus less fluid in motion comes in to contact with the surface of the wedge, this reduces the skin friction

For unsteadiness parameter K, its increases results to decrease in values of skin friction. Unsteady flows imply fluid properties changes with time, one of the property in this case that can vary with time is the viscosity, whose increases results to increased boundary layer thickness which reduces the skin friction as less fluid in motion is into direct contact with the wedge surface.

Vol. 6, Issue 1, pp: (1-35), Month: April - September 2018, Available at: www.researchpublish.com

3.13 Effect of parameters variation on the Nusselt number:

It is the ratio of convective to conductive heat transfer across a boundary layer. The parameters discussed are shown in table 2.

For variable viscosity parameter θ_r , the Nusselt number decreases with increasing values of $\theta_r > 0$. The temperature

dependent viscosity is a function θ_r as given by (Dybbs and Ling ,1987) $\mu = \mu_{\infty} \left(\frac{\theta_r}{\theta_r - \theta} \right)$ the maximum value of

dimensionless temperature θ is taken as 1 from the temperature profiles .From table 4 increasing positive values of θ_r are seen to reduce the value of $\left(\frac{\theta_r}{\theta_r - \theta}\right)$ and thus the viscosity of the fluid, a decrease in fluid viscosity reduces the

thermal boundary layer thickness and hence the heat transfer by convection decreases thus lowering the Nusselt number .

For $\theta_r < 0$ as θ_r becomes more negative the value of $\left(\frac{\theta_r}{\theta_r - \theta}\right)$ increases and in turn the viscosity of the fluid

increases, an increase in fluid viscosity increases the thermal boundary layer thickness and hence the heat transfer by convection and thus the Nusselt number.

For thermal conductivity parameter γ , the Nusselt number decreases with increasing decreasing values of γ . Increase on values of thermal conductivity favors heat transfer by conduction thus in turn reducing the Nusset number which is a ratio of convective to conductive heat transfer

For the suction parameter $f_w > 0$, the Nusselt number increases with increasing value of $f_w > 0$ when suction takes place along the wedge which is kept at a higher temperature than the ambient fluid, the fluid loses the heat to the surrounding by convection hence increasing the Nusset number.

An increase in wedge angle parameter β , increases the Nusselt number .From velocity profile figure (5.12) increasing values of β are seen to increases the fluid velocity .Increased velocity enhances convective heat transfer hence the Nusselt number.

Nusselt number increases insignificantly with increasing values of Hartman number Ha, this can be attributed to insignificance change it has on the temperature profile

as seen in figure (5.11)

The increasing values of stretching parameter $\lambda > 0$ increases the Nusselt number. The stretching of the wedge increases the surface area for convection heat transfer to take place hence the increase in Nusset number.

For unsteadiness parameter K its increase results to decrease in Nusset number. As time goes by the boundary layer thickness reduces due to suction thus reducing the heat transfer by convection hence the reduced Nusselt number

3.14 Effect of parameters variation on the Sherwood number:

It is the ratio of convective to diffusive mass transfer. The parameters discussed are shown in table 2 and 3.

The viscosity variable parameter θ_r has two cases shown when $\theta_r > 0$ and $\theta_r < 0$. For $\theta_r > 0$, the Sherwood number decreases with increasing values of $\theta_r > 0$, as viscosity increases the boundary layer thickness increases hindering mass transfer across the wedge by convection thus reducing the Sherwood number.

For thermal conductivity parameter γ , the Sherwood number increases with increasing values of γ . Increase in thermal conductivity increases the convective mass transfer, hence the Sherwood number

For thermophoretic coefficient κ , the Sherwood number increases with increasing values of κ . Increase in κ imply increase in the rate at which thermophoresis takes place. Thus as the particles moves from the fluid to the boundary layer by convection and later to the wedge surface by thermophoresis Sherwood number increases

Vol. 6, Issue 1, pp: (1-35), Month: April - September 2018, Available at: www.researchpublish.com

For thermophoretic parameter N_t , the Sherwood number decreases with increasing values of N_t From definition T

 $N_t = \frac{T_{\infty}}{T_w - T_{\infty}}$ to imply for concentration parameter ratio N_c , the Sherwood number increases with increasing with

increasing values of N_c , higher concentration of fluid attributed by larger values of N_c imply higher convective mass transfer since the wedge surface is heated.

For suction parameter $f_w>0$, the Sherwood number increases with increasing values of $f_w>0$. As more suction takes place across the heated porous wedge more convective mass transfer takes place since the wedge is heated

For the angle wedge parameter β , the Sherwood number increases with increasing values of β . Increase in β imply that pressure gradient increases and hence the velocity as the fluid velocity increases mass transfer by convection is enhanced by the increased velocity.

For the stretching wedge parameter $\lambda > 0$, the Sherwood number increase with increasing value of $\lambda > 0$. As the wedge stretches there is increased surface area over which the fluid can flow .Also the size of the pores on the pore wedge increases with increasing value of $\lambda > 0$. This enhances convective mass transfer across the heated permeable wedge thus increasing the Sherwood number.

For the unsteadiness parameter K, the Sherwood number increases with increasing value of K. Unsteady flow implies that the flow depends on time thus K increases it imply more time dependent flow. Hence as time goes by more convective mass transfer takes place along the porous wedge.

3.15 Effect of parameters variation on the thermophoretic particle deposition velocity:

The parameters discussed are shown in Table 2 and 3.

Table 1 show the variation of thermophoretic particle deposition velocity at the surface of the wedge for different values of variable viscosity parameter θ_r , thermal conductivity variation parameter γ , suction/injection parameter f_{w} , wedge angle parameter β Hartman number Ha stretching /shrinking parameter λ and unsteadiness parameter K

Table 3 shows the variation of thermophoretic particle deposition velocity at the surface of the wedge for different values of thermophoretic coefficient κ thermophoresis parameter N_t and coefficient ratio N_c .

For increasing positive values of variable viscosity θ_r the thermophoretic particle deposition decreases as seen in table 3.

This is a result of increased temperature of the fluid with increased values of $\theta_r > 0$ as seen in figure (5.8) thus more fluid particle tend to dissolve rather than being deposited with the increase temperature of the fluid thus the decrease in deposition.

For thermal conductivity parameter γ the thermophoretic particle deposition increases with increasing values of γ , from the concentration profile increasing values of γ are seen reduce the concentration of the fluid which is attributed to the thermophoretic deposition taking place as the fluid velocity is reduced with increased values of γ

For suction parameter $f_w > 0$ the thermophoretic particle deposition increases with increasing values of $f_w > 0$, from figure (5.5) Suction is seen to reduce the temperature, reduction in temperature enhances particle deposition as the fluid becomes saturated at a given temperature and undissolved particles are deposited.

For wedge angle parameter β , the thermophoretic particle deposition increases with increasing values β . From definition of thermophoretic particle deposition given by

$$Vd \operatorname{Re}^{-\frac{1}{2}} = \frac{1}{\sqrt{2-\beta}} \frac{1}{Sc_{\infty}} \phi'(0)$$
 Thus as β increases to approach $2\left(\lim_{\beta \to 2} \frac{1}{\sqrt{2-\beta}}\right)$ the deposition increases

since the value under the root sign decreases

Vol. 6, Issue 1, pp: (1-35), Month: April - September 2018, Available at: www.researchpublish.com

For Hartman number Ha, stretching parameter $\lambda > 0$ and unsteadiness parameter K, the thermophoretic particle deposition increases with increasing values of the three parameters. The three parameters from the temperature profiles are seen to decreases the temperature of the fluid, decrease in the fluid temperature favors deposition as the fluid attains saturation levels and excess fluid particles are deposited

For thermophoretic coefficient κ the thermophoretic particle deposition velocity increases with increasing value of κ .

From the thermophoretic velocity denoted by $V_T = -\frac{\kappa v}{T} \frac{\partial T}{\partial y}$ increase in values of κ increases the thermophoretic

velocity hence increases in thermophoretic particle deposition

For thermophoresis parameter N_t , the thermophoretic particle deposition decreases with increasing values of N_t , increased

 $N_t = \frac{T_{\infty}}{T_w - T_{\infty}}$ imply that the temperature of the fluid is increasing, thus in turn more fluid particles tend to dissolve in

the fluid rather than being deposited as solubility increases with increase in temperature hence decreasing thermophoretic deposition

For concentration ratio N_c, the thermophoretic particle deposition increases with increasing values of N_c.

3.16 Conclusion and Suggestions for Future Work:

The effects of variable fluid properties and thermophoresis on unsteady forced convective magnetohydrodynamics boundary layer flow along a permeable heated stretching/shrinking wedge were studied numerically with variable: viscosity, thermal conductivity, and Prandtl and Schmidt numbers. The governing time dependent nonlinear partial differential equations are reduced to set of nonlinear ordinary differential equations by similarity transformations and solved by collocation method. The numerical results for dimensionless velocity, temperature and concentration are presented graphically .The numerical values for skin friction, Nusselt number, Sherwood number and thermophoretic particle deposition velocity are tabulated .From the present numerical investigations the following major conclusions maybe drawn.

- (i) Variable viscosity affects significantly all the three flow variables; velocity, temperature and concentration
- (ii) With an exception of Variable viscosity for all other parameters if a parameter increases velocity it reduces temperature and concentration or if a parameter decreases velocity it increases temperature and concentration
- (iii) The wedge angle parameter produces the greatest variation in skin friction and thermophoretic particle deposition
- (iv) The variation of viscosity ,Suction ,induced magnetic field, stretching the wedge produces the greatest significant variation on skin friction
- (v) The wedge angle parameter ,the suction and variable viscosity greatly influence the Sherwood number
- (vi) The magnetic field applied perpendicular to the fluid flow increases the fluid velocity and reduces its temperature ,it has no effect on concentration since concentration equation is not a function magnetic field
- (vii) The applied magnetic field has insignificant change on Sherwood number and thermophoretic particle deposition

3.17 Suggestions for Future Work:

- In this study magnetic field is applied perpendicular to the flow we suggest in future study may be carried on inclined magnetic field or on a flat surface
- In this study we have used incompressible fluid .We suggest that further research can be done using compressible fluids

REFERENCES

- Alam M.S, Asiya Khatun, Rahman M.M, Vajravelu K. (2016). effect of variable fluid properties and thermophoresis on unsteady forced convective boundary layer flow flow along a permeable streching wedge with variable prandtl number and schmidt numbers. Int J Mech Sci, 191-205.
- [2] Ali E. (2006). The Effect of Variable viscosity on mixed convection heat transfer along a vertical moving surface . Int J Them Sci , ;45:60-9.

- [3] Chaim TC. (1998). Heat transfer with variable conductivity in a stagnation point flow towards a streching sheet. Int Commun Heat Transfer , 129:63-72.
- [4] Duwairi HM, Damesh RA. (2008). Effects of thermophoresis particle deposition on mixed convection from vertical surfaces embedded in saturated porous medium. Int J Number methods Heat fluid flow, 18(2):202-16.
- [5] Dybbs A, Ling JX. (1987). Forced convection over a flat plate submersed in porous medium: Variable viscosity case. ASME,paper 87-WA/HT-23, ASME winter annual metting ,Boston,Massachesett;, 13-18.
- [6] Garg VK, Jayaraj S. (1990). Thermophorertic deposition over a cylinder. int J Eng Fluid Mech, 75-96.
- [7] Goren SL. (1977). Thermophoresis of aerosol particles in the laminar boundary layer of a flate. J Colloid Interface Sci, 77-85.
- [8] Hayat T, Shedzad SA, Alsaedi A. (2013). Three-dimensional stretched flow of Jeffrey fluid with variable thermal conductivity and thermal radiation. Appl Math Mech , 34:823-32.
- [9] Kadasmamy R, Muhaimin I. (2010). Scaling transformation for the effect of temperature-dependent fluid viscosity with thermophoresis particle deposition on MHD-free convective heat and mass transfer over a porous stretching surface. Transp Porous Med, 84:549-68.
- [10] Makinde OD. (2006;). Laminar falling liquid with variable viscosity along an inclided heated plate. Appl Math Comput, 175:80-8.
- [11] Mukhopadhyay SG, Layek C Samad Sk A. (2005). Study of MHD boundary layer flow over heated stretching sheet with variable viscosity. Int J Heat Mass Transfer, 48:4460-6.
- [12] Prassad KV, Vajravelu K. (2009). Heat transfer in the MHD flow of a power law fluid over a non-isothermal stretching sheet. J.Heat Mass Transfer, 152:4956-65.
- [13] Rahman MM, Aziz A, Al-Lawatia MA. (2010). Heat transfer in micropolar fluid along an inclined permeable plate with variable fluid properties. Int J Therm Sci, 49:993-1002.
- [14] Rahman MM,Postelnicu A. (2010). Effects of thermophoresis on the forced convective liminar flow of viscous incompressible fluid over a rotating disk. Mech Res Commun, 37:598-603.
- [15] Rahman MM,Rahman MA,Samad MA, Alam M.S. (2009). Heat transfer in micropolar fluid along a non linear stretching sheet with temperature dependedant viscosity and variable surface temperature. Int J Thermophys, 30:1649-70.
- [16] Rahman MM. (2010). Convective hydromagnetic slip flow with variable properties due to porous rotating disk. SQU J Sci, 15:55-79.
- [17] Shedzad et al. (2014). MHD mixed convection peristaltic motion of nanofluid with Joule heating and thermophoresis effects. Plos One, 9.
- [18] Talbot L,Cheng RK,Schefer AW,Willis DR. (1980). Thermophoresis of particle in a heated boundary layer. J Fluid Mech, 101:737-58.
- [19] Walker KL ,Homsy GM,Geying FT. (1979). Thermophoretic deposition of small particles in laminar tube . J Colloid Interface Sci, 69:138-47.
- [20] Wang CC, Chen CK. (2006). Thermophoretic deposition of particles from boundary layer flow onto a continuously moving wavy suface . Acta Mech , 10(4):432-48.