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Abstract: The study takes into account temperature dependent viscosity and thermal conductivity as well as 

induced magnetic field in describing the fluid flow. The partial differential equations governing the unsteady flow 

is transformed to a system of non-linear ordinary differential equations by similarity transformation. The 

transformed differential equations are solved by collocation method. The numerical results for the flow variables: 

velocity, temperature and concentration profiles are displayed graphically for several parameters and discussed in 

details. The effect of physical parameters such as: Skin friction, Nusselt number, Sherwood number and 

thermophoresis particle deposition are also tabulated. The results shows that the increasing values of positive 

variable viscosity parameter increases the velocity, temperature, concentration and decreases all the four stated 

physical parameters .For the decreasing values of negative variable viscosity parameter all the three flow variables 

decreases while all the physical parameters increases. 
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1.   PRELIMINARIES 

1.1 NOTATION AND TERMINOGY: 

(u,v) Velocity components ,
wf ,   Suction/injection parameter, K unsteadiness parameter, t  thermophoresis parameter,

c
 concentration ratio, a

 Hartman number, r  ambient Prandtl number
, Sc  ambient Prandtl number,

vr  variable 

Prandtl number,
vSc  variable Prandtl number, v

 kinematic viscosity,  Stretching /shrinking parameter, r variable 

viscosity parameter ,


wedge angle parameter, 
 
thermal conductivity variation parameter   thermophoretic coefficient  

,  dimensionless temperature ,  dimensionless concentration 


 dynamic viscosity ,


stream function,


similarity 

variable 

  



International Journal of Mathematics and Physical Sciences Research   ISSN 2348-5736 (Online) 
Vol. 6, Issue 1, pp: (1-35), Month: April - September 2018, Available at: www.researchpublish.com 

 

Page | 2 
Research Publish Journals 

 

1.2  INTRODUCTION: 

Fluid is a substance that flows under an applied sheer force. Some fluid properties include: density, viscosity, temperature, 

pressure, specific volume, weight and gravity. Properties of interest in this study are viscosity and temperature. 

In the past studies have been done considering constant fluid properties, some of the studies with constant viscosity and 

thermal conductivity include: Shedzad et al.(2014) analyzed the effect of thermophoresis mechanisms on mixed 

convection flow with different flow and thermal conditions. Thermophoretic transport of aerosol particles through a fluid 

convection laminar boundary layer in cross flow over a cylinder has been reported by (Gang and Jayaraj, 1990). 

Goren (1977) analyzed thermophoresis in laminar flow over a horizontal flat plate. He noted that the deposition of 

particles on cold plate and particles free layer in hot plate case, the deposition efficiency of small particles due to 

thermophoresis in laminar tube has been calculated (Walker et al. 1979).Thermophoresis in natural convection for a cold 

vertical flat surface has been analyzed (Epstein etal.1985). The thermophoretic deposition of particles from a boundary 

layer flow onto a continuously wavy surface, has been studied numerically by (Wang and Chen ,2006) there numerical 

results showed that the mean deposition effect of the wavy plates is greater than the flat plates. 

Duwairi and Damesh (2008) studied the effect of thermophoresis particle deposition on mixed convection from vertical 

surface embedded in a fluid saturated porous medium. Rahman and Postelnicu (2010) studied the effects of 

thermophoresis on forced convective laminar flow of viscous incompressible fluid over a rotating disk 

All the above discussed studies considered a fluid with a constant viscosity and thermal conductivity .Viscosity is thermo 

physical property of a fluid which has many application in our day to day life such in wire drawing ,glass fiber production 

,paper production etc. Due to practical application researchers have studied flows with temperature dependent viscosity. 

Makinde (2006) studied the laminar falling liquid film with variable viscosity along an inclined heated plate 

.Mukhopadhyay et al. (2005) studied MHD boundary layer flow over a heated stretching sheet with variable viscosity. Ali 

(2006) analyzed the effect of variable viscosity on mixed convection heat transfer along a vertical moving surface heated 

plate. Kandasamy and Muhaimin (2010) studied the Scaling transformation forth effect of temperature dependent fluid 

viscosity with thermophoresis particle deposition on MHD free convective heat and mass transfer over a porous stretching 

surface.  

The authors considered a fluid with a constant thermal conductivity of the fluid. Thermal conductivity is a property of a 

material to conduct heat .From definition thermal conductivity is a physical property of fluid that may also vary with 

variation of temperature. Hayat et al. (2013) analyzed three dimensional flows of Jeffery fluids with variable thermal 

conductivity. The main finding of the study was that the effect of varying thermal conductivity increases the shear stress. 

The thickness of the thermal boundary layer relative to velocity boundary layer depends on the Prandtl number. As the 

viscosity and thermal conductivity vary with temperature so due the Prandtl number .Despite this fact the pre-mentioned 

studies treated Prandtl number as a constant. Using constant Prandtl number within the boundary layer when the fluid 

properties are temperature dependent produces errors in the computed results (Rahman et al. 2009) 

Rahman et al. (2010) studied a series of thermal boundary layer problems while varying viscosity and thermal 

conductivity. There studies confirmed that for accurate prediction of the thermal characteristics of variable viscosity and 

thermal conductivity fluid flow the Prandtl number must be treated as a variable rather than a constant.  

Alam et al. (2016) studied the effect of thermophoretic particle deposition on unsteady forced convective boundary layer 

flow of a viscous incompressible fluid. From there results they observed that, for variable thermal conductivity, the 

Prandtl number and Schmidt number should be considered as variable rather than constants thus confirming (Rahman et 

al. 2010) work. 

The motivation behind this study is to extend the work of Alam et al. (2016) ,where we consider variable: viscosity, 

thermal conductivity, Prandtl number and Schmidt number and introduce Magnetic field on fluid flow. 

2.   MATHEMATICAL MODEL 

We consider unsteady two -dimensional laminar flow in presence of a magnetic field applied parallel to y-axis of viscous 

incompressible electrically conducting fluid along a porous wedge .The flow is assumed to be in the x-direction which is 

taken along the direction of the wedge and y-axis is normal .Viscosity, thermal conductivity, Prandtl and Schmidt 
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numbers are all treated as variables .There suction which is imposed on the surface of the wedge. The boundary layer 

governing equations for this problem are as follows. 
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2.1 The Flow Geometry: 

The figure below illustrate the model used for fluid flow  

 

Fig 1: flow geometry 

The surface of the wedge is maintained at uniform constant temperature Tw and uniform concentration Cw which are 

higher than the temperature T  and concentration C  of the fluid respectively .On the figure B0 denote the applied 

magnetic field parallel to y-axis, ),( txU is the potential flow velocity and    is the angle of the wedge. 

2.2 NON DIMENSIONALIZATION: 

Non dimensionalization is important since the results obtained for a surface experience on a set of conditions can be 

applied to a geometrically similar surface experience with the different conditions .
  

The partial differential equations governing the flow are transformed to ordinary differential equations by similarity 

transformation. Let u, v be the velocity component in x and y directions respectively and U= ue   the potential flow 

velocity generated by the wedge, T the temperature of the fluid inside the thermal boundary layer, C the concentrations 

inside boundary layer. 
y

T

T
VT




 

Is the thermophoretic velocity as defined (Talbot et al.1980) where  is the 

thermophoretic coefficient. 

Using the following relations  

B0 
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Where   is the similarity variable,   is the stream function that satisfies the continuity equation such that 
y

u






and

x
v







. The specific equations (2.2)-(2.4) can be transformed as discussed herein. 

2.2.1 Transformation of Equation of Motion: 

The specific equation of motion governing the flow as given in (2.2) is  
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We start by transforming the terms on the left hand side (LHS) using 

The relation
y

u



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Given that u is the velocity component in x direction and ue is the potential flow velocity   
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Using the obtained relation (2.8) we proceed as follows 
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Since potential flow velocity generated by the wedge is defined as 
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(Sattar, 2011).Then equation (2.9) above reduces to 
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Substituting (2.11) into (2.9) we get  

          (2.12) 

   

 

Which the transformed equivalence of the first term on the LHS of equation of motion .Using the solution for (2.5) the 

second term of on the LHS of equation of motion is transformed as follows  
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Substituting (2.14) into (2.13) we get 
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Equation (2.15) is the transformed equivalence of the second term on the LHS of equation of motion 

For the third term of equation of motion, it’s transformed as shown below, given that v is the velocity component in y 

direction. Using the value of u the velocity component in x direction as  fuu e
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The potential flow velocity is given by 
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Differentiating the terms on the right hand side of the equation of motion  
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In this research temperature dependent viscosity is used (Dybbs and ling, 1987) as shown  



International Journal of Mathematics and Physical Sciences Research   ISSN 2348-5736 (Online) 
Vol. 6, Issue 1, pp: (1-35), Month: April - September 2018, Available at: www.researchpublish.com 

 

Page | 7 
Research Publish Journals 

 











 






r

r
 Where r  is the variable viscosity parameter and   is the dimensionless temperature
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Considering the magnetic effect on the equation of motion 
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We obtain the following after simplifying the coefficient of f 
 
 on equation (2.25) 
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  Where K is the unsteadiness parameter  

Simplifying the coefficient of 
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Simplifying the coefficient of ff   on equation (2.25) 
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Simplifying the first and second terms on the RHS on equation (2.25) 
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Simplifying the third term on the RHS of equation (2.25), the coefficient of f   
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Simplifying the last term on the RHS of equation (2.25), the coefficient of magnetic term  
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Combining the terms obtained in (2.26a)-(2.26g) we get  
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Equation (2.27) is the specific differential equation of motion  

2.2.2 Transformation of Energy Equation: 

The energy equation as given in (2.3) is
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Operating on the first term on the left hand side of differential equation of energy (2.3) 
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Operating on the second term on the left hand side of differential equation of energy (2.3)
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But V the velocity component in the y direction, from (2.18) is given by  
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Operating on the first term on the right hand side of energy equation, (2.3) where thermal conductivity is taken as a 

variable (chaim, 1996)  
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For the magnetic term  
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Hence combining (2.28)-(2.32)) the differential energy equation becomes 
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For the coefficient of  on the left hand side of differential equation (2.33), we use the definition of thermal conductivity 

)1(  kk f as defined and used in equation (2.31) and use the substitution as shown below  
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For the coefficient of  f on the left hand side of differential equation (4.29) we obtain  
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For the first term on the right hand side of differential equation (4.29) we obtain  
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Considering the magnetic term on 
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 Thus combining the terms obtained from ((2.33a)-(2.33d)) the partial differential equation of energy (2.3) reduces to the 

ordinary differential equation of energy below. 
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Since variable Prandtl number is used in this research the ambient Prandtl number in equation (2.34) is replaced as 

follows
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            (2.35) 

Equation (2.35) is the ordinary differential equation of energy with variable Prandtl number 

 

2.2.3 Transformation of Concentration Equation: 

The concentration equation as given by equation (2.4) is 
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Using the non dimensionless variable )( which denotes the dimensionless concentration and given by 
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Operating on the first term on the left hand side of concentration equation (2.4)
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 Operating on second term on the left hand side of concentration equation 
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The V the velocity component in the y direction, from (2.18) is given by  
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The thermophoretic velocity VT  is given by 
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 Combining (2.41a)-(2.41c) we get the differential equation of concentration  
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For the first term on the left hand side of equation (2.42) 
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For the second term on the left hand side of equation (2.42) 
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For the third term on the left hand side of equation                                                                                             (2.42) 
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Operating on the thermophoretic differential part of equation (2.42) 
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Where the thermophoretic parameter tN and dimensionless temperature   when added simplifies as shown below  
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Where the concentration ratio Nc and dimensionless concentration  when added simplifies as shown below   
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Combining equations (2.43a) to (2.43f) 
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Rearranging the terms in (2.43g) we get the concentration equation below  
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Since variable Schmidt number is used in this research the ambient Schmidt number is replaced as follows.  
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 2.2.4 Reducing the Differential Equation to First Order: 

The differential equations of motion, energy and concentration (2.27), (2.35) and (2.44b) respectively are shown below  
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They are to be reduced to seven equivalent first order differential equations using the following relations 

Let 
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We obtain the following system of equations  
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2.2.5 NUMERICAL METHODS OF SOLUTIONS:

 

To outline the collocation method used to obtain the numerical solution we first write the above system of equation in 

vector form as below
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Thus (2.45) is solved subject to the boundary conditions   0),(),0(


 pxxh    (2.46) 

Where  Thhhhh 7321 ,....,,


  suppressing p


 in (2.45) for convenience we obtain    0)(),0(


 xxh  
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The approximate solution )(S


is continuous function that is cubic polynomial on each sub interval 1, nn   of a mesh 

 N .........0 it satisfies the boundary conditions   0)(),0(


 ssh      (2.47) 

and the differential equations at both ends and midpoint of each sub interval  
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These nonlinear algebraic equations are then solved iteratively by linearization .Since )(S


is a cubic polynomial 

approximating the solution )(X


 then the iteration are done subject to the conditions: 

4)()( ChSX  


         (2.48) 

Where h is the maximum of the step sizes 

nnnh   1  For N,......2,1,0  and C is a constant 

To obtain the initial guess for this collocation method, we note that the continuity  

of  ,0)( onS 


  and collocation at the ends of each sub interval to imply that )(S


also has a continuous derivative 

on  ,0 .Thus for the approximation  )(S


we compute the residual )(r


in the above system of ordinary differential 

equations as follows  

 )(,)()(  SgSr 


            (2.49) 

Similarly the residual in the boundary conditions is obtained from (2.46) .If the residuals are uniformly small, then )(S


 

is the required approximation of the exact solution )(X


.Thus the ideal is to minimize the size of the residuals by 

ensuring that the condition (2.48) is met at each point n  

3.   RESULTS AND DISCUSSION 

To analyses the effect of different parameters along a heated permeable stretching / shrinking wedge surface on 

dimensionless: velocity, temperature and concentration. Numerical results have been obtained on different kinds of 

parameters namely: Stretching /shrinking parameter  ,suction/injection parameter fw , variable viscosity  parameter  r , 

unsteadiness parameter K,wedge angle parameter  ,thermophoresis parameter  t , concentration ratio c , thermal 

conductivity variation parameter   ,thermophoretic coefficient  and Hartman number a . When viscosity and 

thermal conductivity are treated as constants, then the value of the ambient Prandtl number  

r =0.71corresponds to air and Schmidt number 94.0Sc corresponds to carbon (iv) oxide. The default value of the 

other parameters are taken to be: 2.0 , 1wf , 2.0K , 9.0 , 5.1r , 35.0 , 5.0 , 5 t ,

5 c and 1a   

3.1 Effect of stretching parameter  on flow variables: 

From figure 5.1 the velocity profile increases with increasing values of stretching parameter 0 ,this is due to reduced  

viscosity of the fluid caused by the stretching boundary layer and thus the fluid flows more faster with minimal resistance 

. 
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Figure 5.2, illustrates the effect of stretching/shrinking parameter  on dimensionless temperature, from the figure it 

implies that within the boundary layer the temperature decreases with increasing values of stretching parameter,  >0 

.This due to the increasing velocity caused by increasing values of  >0 to imply that the fluid do not get enough time to 

be heated by the heated wedge, thus the decrease in temperature. 

Figure 4.3, illustrates the effect of stretching/shrinking parameter  on dimensionless concentration, from the figure, 

concentration decreases insignificantly with increasing values of stretching parameter 0 . Increasing values of 0

is seen to reduce the temperature thus few fluid particles will dissolve as the fluid becomes saturated at some given 

temperature hence the reduction in concentration  

 

Figure 5.1: Velocity profile for different values of stretching/shrinking parameter    

 

Figure 5.2: Temperature profile for different values of stretching/shrinking parameter   
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Figure 5.3: concentration profile for different values of shrinking/stretching parameter   

3.2 Effect of suction parameter wf on flow variables: 

Figure 5.4 illustrates the effect of suction/injection parameters, wf  on dimensionless velocity from the figure the fluid 

velocity increases with the increase of suction parameter 0wf . This is due to reduction in thickness in hydrodynamic 

boundary layer as suction parameter increase causing removal of the decelerated fluid particles through the porous 

surfaces thus reducing the growth of boundary layer and hence increasing the fluid velocity. 

Figure5.5, illustrates the effect of suction /injection parameter, wf  on dimensionless temperature, from the figure, the 

dimensionless temperature decreases with increasing values of suction parameter wf >0. Suction acts as a mechanism for 

cooling as it reduces the boundary layer thickness thus the fluid loses the heat to the surrounding by convection hence the  

decreasing its temperature. 

 Figure 5.6, illustrates the effect of suction/injection parameter wf  on dimensionless concentration, from the figure the 

dimensionless concentration decreases with increasing values of suction parameter wf >0.Suction removes fluid particles 

and in turn lowering its concentration, increasing values of 0wf is seen to reduce the temperature thus less fluid 

particles will dissolve as the fluid becomes saturated at some given temperature hence the reduction in concentration  

 

Figure 5.4: Velocity profile for different values of suction/injection   fw 
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Figure 5.5: Temperature profile for different values of suction/injection parameter fw
 

 

Figure 5.6: concentration profile for different values of suction/injection   fw 

3.3 Effect of variable viscosity parameter, r on flow variables 

Figure 5.7, illustrates the effect of variable viscosity parameter r on dimensionless velocity, from the figure we see that 

within the boundary layer velocity increases with the increasing values of 0r  

From the differential equation of motion (4.23) given by  
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For 0r ,as r  become more positive the value of 









r

1
1 in equation of motion above increases as shown in table 

1, as a result this increases the velocity .For 0r  the velocity decreases as the values of r  become more negative 

since the scalar 









r

1
1 reduces in size as shown in table 1,thus reducing velocity  

Table 1: Numerical values of 









r

1
1 for different values of variable viscosity parameter r  

r  -3.0 -1.5 1.5 3.0 











r

1
1  

1.33 1.67 0.33 0.67 

Figure 5.8, illustrates the effect of variable viscosity parameter r   on dimensionless temperature, from the figure for  

0r  the temperature within the boundary layer increases with increasing values of r .From the differential equation 

of energy (4.32) shown below 
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For 0r  the increase in temperature is as a result of increase in the value of 









r

1
1 due to r becoming more 

positive as shown in table 1.For r <0 the temperature within the boundary layer decreases as the values of r become 

more negative since the scalar 









r

1
1 reduces as r become more negative.  

Figure 4.9, illustrates the effect of variable viscosity parameter r  on dimensionless concentration, from the figure, 

profile for r >0 and r <0 are shown. For r >0, the concentration within the boundary layer increases with the 

increasing values of r  

From the concentration differential equation  
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For 0r  the increase in concentration is as a result of increase in the value of 











r

1
1 in the above concentration equation (4.51b) due to increase in the value of 0r . For r <0 the 

concentration within the boundary layer decreases as the values become more negative since the scalar 









r

1
1 reduces 

as r become more negative. 
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Figure 5.7: Velocity profile for different values of variable viscosity parameter r  

 

Figure 5.8: Temperature profile for different values of variable viscosity parameter 

 

Figure 5.9: concentration profile for different values of variable viscosity parameter r  
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3.4 Effect of Hartman number, Ha on flow variables: 

Figure 5.10 illustrates the effect of Hartman number Ha on dimensionless velocity, from the figure the fluid velocity 

increases with increasing values of Ha. Hartman number presents the impact of the applied magnetic field in the flow 

field. The magnetic field in this research is applied vertically above the wedge denoted by 0B  ,on interacting with the 

fluid its direction is changed to 0B thus enhancing the fluid flow .These magnetic field moving with the free stream 

induces an electromotive force which increases the motion of the fluid. 

Figure 5.11, illustrates the effect of the effect of Hartman number Ha, on dimensionless temperature, from the figure, the 

temperature within the boundary layer insignificantly decreases with increasing value of Ha .From velocity profile 

(figure 5.10) Ha, is seen to enhance velocity to imply that the fluid does not get enough time to be heated by the wedge 

thus the reduction in temperature  

Hartman number has no effect on concentration profile this is due to insignificant change in temperature thus particle 

deposition or dissolving in the fluid is insignificantly affected hence no effect on concentration.  

 

Figure 5.10: Velocity profiles for different values of Hartman number Ha 

 

Figure 5.11: Temperature profile for different values of Hartman number Ha  
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3.5 Effect of wedge angle parameter,   on flow variables: 

Figure 5.12, illustrates the effect of wedge angle parameter   , on dimensionless velocity, from the figure the fluid 

velocity increases with increasing values of wedge angle parameter. Wedge angle parameter is a measure of the pressure 

gradient, thus positive values of  indicate favorable pressure gradient for accelerated flows .From differential equation 

of motion (2.27) 
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It shows that increasing values of    would favor an increase in fluid velocity as it would act as positive scalar to the 

velocity .The wedge angle parameter has no effect on temperature and concentration since their differential equations 

(2.35) and (2.44b) are not functions of   

 

Figure 5.12: Velocity profile for different values of wedge angle parameter   

3.6 Effect of thermal conductivity parameter,


on flow variables: 

Figure 5.13 illustrates the effect of thermal conductivity variation parameter   on dimensionless velocity, from the 

figure, the fluid velocity decreases with increasing value of  . When the thermal conductivity of the fluid increases, the 

value of Prandtl number decreases to imply thermal diffusivity has increased resulting to a decrease in kinematic viscosity 

and thus the decrease in fluid velocity  

Figure 5.14, illustrates the effect of thermal conductivity variation parameter   on dimension less temperature, from the 

figure, the temperature within the boundary layer increases with increasing values of  .When the thermal conductivity of 

the fluid increases, the value of Prandtl number decreases which intern increases the temperature of the fluid due to 

increased thermal diffusivity. 

Figure 5.15, illustrates the effect of thermal conductivity parameter on dimensionless concentration ,from the figure, the 

concentration decreases with increasing values of  .Since increasing values of are resulting to decrease in velocity ,this 

will facilitate thermophoretic deposition hence decrease in concentration  
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Figure 5.13: Velocity profile for different values of thermal conductivity parameter   

 

Figure 5.14: Temperature profile for different values of thermal conductivity parameter   

 

 

 

 

 

 

 

 

 

 

Figure 5.15: concentration profile for different values of thermal conductivity parameter   
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3.7 Effect of unsteadiness parameter on flow variables: 

Figure 5.16, illustrates the effect of unsteadiness parameter K on dimensionless temperature. From the figure the 

temperature within the boundary layer increases with increasing values of K . Unsteady flows are time dependent thus 

with time since the wedge temperature is higher than that of the ambient fluid, through convection the heat is distributed 

from the wedge to the fluid thus raising its temperature  

Figure 5.17; illustrate the effect of unsteadiness parameter K, on dimensionless concentration, from figure the 

concentration decreases with increasing values of K. Unsteadiness imply time dependent flow, thus as time goes by 

suction and thermophoretic deposition takes places thus reducing the concentration of the fluid 

 

Figure 5.16: Temperature profile for different values of unsteadiness parameter K 

 

 

Figure 5.17: concentration profile for different values of unsteadiness parameter K 
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3.8 Effect of thermophoresis parameter, Nt on flow variables: 

Figure 5.18, illustrate the effect of thermophoresis parameter Nt , on dimensionless concentration ,from the figure  

concentration increases with increasing values of Nt .From the definition 








TT

T
N

w

t
it implies that  an increases in 

Nt is as result of  temperature of the fluid ( T ) increasing , increase in temperature of the fluid increases solubility of fluid 

particles hence the concentration .Nt has no effect on fluid velocity and temperature as there differential equations  (2.35) 

and (2.44b) are not functions of Nt respectively. 

3.9 Effect of concentration ratio parameter, Nc on flow variables: 

Figure 5.19; illustrate the effect of concentration ratio parameter Nc, on dimensionless concentration, from figure the 

concentration increases with increasing values of Nc. The concentration ratio is defined by 








CC

C
N

w

c to imply its 

increase is as a result of fluid concentration ( C ) increasing thus there is a direct relationship between concentration and 

concentration ratio. Nc has no effect on fluid velocity and temperature as there differential equations (3.45) and (3.56) are 

not functions of Nc   respectively. 

3.10 Effect of thermophoretic coefficient,  on flow variables: 

Figure 5.20, illustrates the effect of thermophoretic coefficient  on dimensionless concentration, from the figure, the 

concentration decreases with increasing values of . Increasing values of thermophoretic coefficient imply increased 

thermophoretic deposition on the wedge, thus decrease in concentration as fluid particles are deposited. Thermophoretic 

coefficient, has no effect on fluid velocity and temperature as there differential equations (2.35) and (2.44b) are not 

functions of   respectively. 

 

Figure 5.18: concentration profile for different values of Nt 
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Figure 5.19: concentration profile for different values of concentration ratio Nc 

 

Figure 5.20: concentration profile for different values of thermophoretic coefficient    

3.11 Effect of parameters variation on the skin friction, Nusselt number, Sherwood number and thermophoretic 

particle deposition velocity 

The combined effect of variable viscosity r ,thermal conductivity parameter  , suction/injection parameter wf ,wedge 

angle parameter   ,shrinking /stretching parameter   unsteadiness parameter K and Hartman number Ha on skin 

friction 
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Table 2: Numerical values of skin friction, Nusselt number, Sherwood number and thermophoretic particle deposition for 

different values of  KandHaf wr  ,,,,,
 

r    
wf    Ha    K  

2

1

ReCf  2

1

Re


Nu  2

1

Re


Sh  2

1

Re


Vd  

3.0       2.5794 0.8271 1.2902 1.4336 

-1.5       2.3363 0.7802 1.1688 1.2987 

1.5 0.35 1.0 0.9 1.0 0.2 0.2 4.3812 1.1344 2.2765 2.5294 

3       3.4110 0.9779 1.7403 1.9337 

 0.1      4.4348 1.1653 2.1731 2.4146 

1.5 0.35 1.0 0.9 1.0 0.2 0.2 4.3812 1.1344 2.2765 2.5294 

 0.6      4.3607 1.1028 2.3664 2.6394 

  -1.0     2.9504 0.1148 0.3522 0.3522 

  0.0     3.4825 0.5131 1.3066 1.4518 

1.5 0.35 1.0 0.9 1.0 0.2 0.2 4.3812 1.1344 2.2765 2.5294 

   0.2    3.2351 0.8851 1.7779 1.9754 

1.5 0.35  0.9 1.0 0.2 0.2 4.3812 1.1344 2.2765 2.5294 

   1.6    7.6454 1.8842 3.7785 4.1984 

    0.5   3.7867 1.1212 2.2745 2.5272 

1.5 0.35 1.0 0.9 1.0 0.2 0.2 4.3812 1.1344 2.2765 2.5294 

    1.5   5.2046 1.1509 2.2795 2.5328 

     -0.2  6.1199 1.0327 2.1961 2.4401 

     0.0  5.2920 1.0848 2.2374 2.4860 

1.5 0.35 1.0 0.9 1.0 0.2 0.2 4.3812 1.1344 2.2765 2.5294 

      0.1 4.4594 1.1770 2.2149 2.4610 

1.5 0.35 1.0 0.9 1.0 0.2 0.2 4.3812 1.1344 2.2767 2.5294 

      0.3 4.3025 1.0894 2.3386 2.5984 

 

Numerical values of Sherwood number 
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ReSh   and thermophoretic particle deposition velocity 
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


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1

ReVd for 

different values of thermophoresis parameter ,tN concentration ratio Nc and thermophoretic coefficient   are shown 

in table 2 below. 

Table 3: Numerical values of Sherwood number and thermophoretic particle deposition for different values of

ct NandN,  

  
tN  

cN  
2

1

Re


Sh  2

1

Re


Vd  

0.2   1.9652 2.1836 

0.5 5 5 2.2765 2.5294 

0.8   2.5743 2.8603 

 2  2.9250 3.2500 

0.5 5 5 2.2765 2.5294 

 8  2.0875 2.3194 

  2 1.9535 2.1705 

0.5 5 5 2.2765 2.5294 

  8 2.5908 2.8786 
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3.12 Effect of parameters variation on the skin friction: 

This is the friction between a fluid and the surface of a solid moving through it or between a moving fluid and its 

enclosing surface. The parameters discussed are shown in table 2 

From table2 skin friction decreases with increasing values of r >0, skin friction is function of r as defined by 
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as shown in table 4, hence the 

decrease in skin friction 

Table 4: Numerical values of scalar 
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


for different values of variable viscosity parameter r  

r  -3 -1.5 1.5 3 
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Decreasing values of 0r  as seen in table 4, increase 








1r

r




hence the increases in skin friction as r become 

more negative 
 

From table 2 the skin friction decreases with increasing value of   this can be attributed to the reduced velocity effect of 

increased values of as   seen in velocity profile figure (5.13) 

For suction parameter wf the skin friction increases with increasing values of parameter wf  

This is as a result of as more fluid is sucked over the wedge surface over time the boundary layer thickness reduces and as 

a results more fluid molecules comes into contact with the wedge surface hence increasing the skin friction 

Skin friction as seen in the table 2, increases with increasing values of wedge angle parameter, this can be attributed to the 

increased velocity as   increases as seen in figure (5.12) .Increased velocity imply that the rate at which fluid particles 

touches the wedge surface increases thus increasing the skin friction. Also from the definition of skin friction 
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lim 2

  the skin friction increases 

since the value under the root sign decreases 

An increase in wedge angle parameter increases the velocity due to increased pressure gradient of the fluid and hence the 

skin friction as the rate at which fluid particles are in contact with the wedge surface per unit time increases 

The Hartman number variation in the table shows that its increase, results to increase of skin friction. From velocity 

profile discussed the Ha was seen to increases the fluid velocity thus an increases in strength of Ha increases velocity and 

skin friction  

For shrinking/stretching parameter  ,its increase results to decrease in skin friction .Thus as the wedge stretches the skin 

friction reduces since  the boundary layer thickness increases and thus less fluid in motion comes in to contact with the 

surface of the wedge ,this reduces the skin friction  

For unsteadiness parameter K, its increases results to decrease in values of skin friction. Unsteady flows imply fluid 

properties changes with time, one of the property in this case that can vary with time is the viscosity, whose increases 

results to increased boundary layer thickness which reduces the skin friction as less fluid in motion is into direct contact 

with the wedge surface. 
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3.13 Effect of parameters variation on the Nusselt number: 

It is the ratio of convective to conductive heat transfer across a boundary layer. The parameters discussed are shown in 

table 2. 

For variable viscosity parameter r ,the Nusselt number decreases with increasing values of 0r .The temperature 

dependent viscosity is a function r as given by (Dybbs and Ling ,1987) 









 




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r

r
the maximum value of 

dimensionless temperature  is taken as 1 from the temperature profiles .From table 4  increasing positive values of r  

are seen to reduce the value of 












r

r
 and thus the viscosity of the fluid , a decrease in fluid viscosity reduces the 

thermal boundary layer thickness and hence the heat transfer by convection decreases thus lowering the Nusselt number . 

For 0r as r  becomes more negative the value of 












r

r
 increases and in turn the viscosity of the fluid 

increases, an increase in fluid viscosity increases the thermal boundary layer thickness and hence the heat transfer by 

convection and thus the Nusselt number.  

For thermal conductivity parameter  , the Nusselt number decreases with increasing decreasing values of  . Increase on 

values of thermal conductivity favors heat transfer by conduction thus in turn reducing the Nusset number which is a ratio 

of convective to conductive heat transfer   

For the suction parameter 0wf ,the Nusselt number increases with increasing value of 0wf when suction takes 

place along the wedge which is kept at a higher temperature than the ambient fluid, the fluid loses the heat to the 

surrounding by convection hence increasing the Nusset number. 

An increase in wedge angle parameter  , increases the Nusselt number .From velocity profile figure (5.12) increasing 

values of  are seen to increases the fluid velocity .Increased velocity enhances convective heat transfer hence the 

Nusselt number. 

Nusselt number increases insignificantly with increasing values of Hartman number Ha, this can be attributed to 

insignificance change it has on the temperature profile 

 as seen in figure (5.11) 

The increasing values of stretching parameter 0 increases the Nusselt number. The stretching of the wedge increases 

the surface area for convection heat transfer to take place hence the increase in Nusset number. 

For unsteadiness parameter K its increase results to decrease in Nusset number. As time goes by the boundary layer 

thickness reduces due to suction thus reducing the heat transfer by convection hence the reduced Nusselt number 

3.14 Effect of parameters variation on the Sherwood number: 

It is the ratio of convective to diffusive mass transfer. The parameters discussed are shown in table 2 and 3. 

The viscosity variable parameter r has two cases shown when 0r and 0r . For 0r , the Sherwood number 

decreases with increasing values of  0r ,as viscosity increases the boundary layer thickness increases hindering mass 

transfer across the wedge by convection thus reducing the Sherwood number. 

For thermal conductivity parameter  , the Sherwood number increases with increasing values of  . Increase in thermal 

conductivity increases the convective mass transfer, hence the Sherwood number  

For thermophoretic coefficient  ,the Sherwood number increases with increasing values of  .Increase in  imply 

increase in the rate at which thermophoresis takes place .Thus as the particles moves from the fluid to the boundary layer 

by convection and later to the wedge surface by thermophoresis Sherwood number increases  
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For thermophoretic parameter Nt, the Sherwood number decreases with increasing values of Nt From definition 








TT

T
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w

t
to imply ,for concentration parameter ratio Nc ,the Sherwood number increases with increasing with 

increasing values of  Nc, higher concentration of fluid attributed by larger values of Nc  imply higher convective mass 

transfer since the wedge surface is heated. 

For suction parameter  fw>0 ,the Sherwood number increases with increasing values of  fw>0  .As more suction takes place 

across the heated porous wedge more convective mass transfer takes place since the wedge is heated  

For the angle wedge parameter  ,the Sherwood number increases with increasing values of  .Increase in  imply that 

pressure gradient increases and hence the velocity ,as the fluid velocity increases mass transfer by convection is enhanced 

by the increased velocity. 

For the stretching wedge parameter 0 ,the Sherwood number increase with increasing value of 0 .As the wedge 

stretches there is increased surface area over which the fluid can flow .Also the size of the pores on the pore wedge  

increases with increasing value of 0 .This enhances convective mass transfer  across the heated permeable wedge 

thus increasing the Sherwood number.  

For the unsteadiness parameter K ,the Sherwood number increases with increasing value of K .Unsteady flow implies 

that the flow depends on time thus K increases it imply more time dependent flow. Hence as time goes by more 

convective mass transfer takes place along the porous wedge. 

3.15 Effect of parameters variation on the thermophoretic particle deposition velocity: 

The parameters discussed are shown in Table 2 and 3. 

Table 1 show the variation of thermophoretic particle deposition velocity at the surface of the wedge for different values 

of variable viscosity  parameter  r , thermal conductivity variation parameter   , suction/injection parameter fw , wedge 

angle parameter 
 ,

Hartman number a ,stretching /shrinking parameter  and unsteadiness parameter K 

Table 3 shows the variation of thermophoretic particle deposition velocity at the surface of the wedge for different values 

of thermophoretic coefficient  thermophoresis parameter tN and coefficient ratio cN  . 

For increasing positive values of variable viscosity r the thermophoretic particle deposition decreases as seen in table 3. 

This is a result of increased temperature of the fluid with increased values of 0r as seen in figure (5.8) thus more fluid 

particle tend to dissolve rather than being deposited with the increase temperature of the fluid thus the decrease in 

deposition. 

For thermal conductivity parameter   the thermophoretic particle deposition increases with increasing values of  , from 

the concentration profile increasing values of   are seen reduce the concentration of the fluid which is attributed to the 

thermophoretic deposition taking place as the fluid velocity is reduced with increased values of   

For suction parameter 0wf the thermophoretic particle deposition increases with increasing values of 0wf , from 

figure (5.5) Suction is seen to reduce the temperature, reduction in temperature enhances particle deposition as the fluid 

becomes saturated at a given temperature and undissolved particles are deposited. 

For wedge angle parameter  , the thermophoretic particle deposition increases with increasing values  .From definition 

of thermophoretic particle deposition given by  
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For Hartman number Ha, stretching parameter 0  and unsteadiness parameter K, the thermophoretic particle 

deposition increases with increasing values of the three parameters .The three parameters from the temperature profiles 

are seen to decreases the temperature of the fluid, decrease in the fluid temperature favors deposition as the fluid attains 

saturation levels and excess fluid particles are deposited  

For thermophoretic coefficient  the thermophoretic particle deposition velocity increases with increasing value of  . 

From the thermophoretic velocity denoted by 
y

T

T
VT







 increase in values of  increases the thermophoretic 

velocity hence increases in thermophoretic particle deposition  

For thermophoresis parameter Nt, the thermophoretic particle deposition decreases with increasing values of Nt, increased 








TT

T
N

w

t
 imply that the temperature of the fluid is increasing, thus in turn more fluid particles tend to dissolve in 

the fluid  rather than being deposited as solubility increases with increase in temperature hence decreasing thermophoretic 

deposition  

For concentration ratio Nc , the thermophoretic particle deposition increases with increasing values of Nc. 

3.16 Conclusion and Suggestions for Future Work: 

The effects of variable fluid properties and thermophoresis on unsteady forced convective magnetohydrodynamics 

boundary layer flow along a permeable heated stretching/shrinking wedge were studied numerically with variable: 

viscosity, thermal conductivity, and Prandtl and Schmidt numbers. The governing time dependent nonlinear partial 

differential equations are reduced to set of nonlinear ordinary differential equations by similarity transformations and 

solved by collocation method. The numerical results for dimensionless velocity, temperature and concentration are 

presented graphically .The numerical values for skin friction, Nusselt number, Sherwood number and thermophoretic 

particle deposition velocity are tabulated .From the present numerical investigations the following major conclusions 

maybe drawn.  

(i) Variable viscosity affects significantly all the three flow variables; velocity, temperature and concentration  

(ii) With an exception of Variable viscosity for all other parameters if a parameter increases velocity it reduces 

temperature and concentration or if a parameter decreases velocity it increases temperature and concentration 

(iii) The wedge angle parameter produces the greatest variation in skin friction and thermophoretic particle deposition 

(iv) The variation of  viscosity ,Suction ,induced magnetic field, stretching the wedge produces the greatest significant 

variation on skin friction   

(v) The wedge angle parameter ,the suction  and variable viscosity greatly influence the Sherwood number  

(vi) The magnetic field applied perpendicular to the fluid flow increases the fluid velocity and reduces its temperature ,it 

has no effect on concentration since concentration equation is not a function magnetic  field  

(vii) The applied magnetic field has insignificant change on Sherwood number and thermophoretic particle deposition   

3.17 Suggestions for Future Work: 

 In this study magnetic field is applied perpendicular to the flow we suggest in future study may be carried on inclined 

magnetic field or on a flat surface  

 In this study we have used incompressible fluid .We suggest that further research can be done using compressible 

fluids 
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